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Preface

The story of this thesis in many ways mirrors the story of how I came to study

machine learning itself. In my undergraduate studies in applied mathemat-

ics, I encountered the field of operations research (OR), which can broadly

be defined as a collection of mathematical and computational methods for

the study and analysis of problems involving decision-making. I found the

topic very interesting, so in 2017 I applied and was accepted to Cornell’s OR

Ph.D. program, only a year after the publication of AlphaGo in Nature (Sil-

ver et al., 2017). It seemed clear that the sort of decision problems that were

being solved with machine learning were of a different sort than canonical OR

problems like bin-packing or facility-location. At this point I began working

with my advisor, Dr. Andrew Gordon Wilson (with whom I later moved to

NYU), on the topic of Bayesian machine learning, usually with a distinct lean

towards decision-making applications. Over the course of many projects in-

vestigating how decision-making with machine learning could work, I gradu-
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ally internalized normative principles for decision-making in general. In this

thesis I have chosen to highlight some of these principles, and how to satisfy

them with specific machine learning methods from a collection of papers pub-

lished during the last three years. Sadly there is a great deal of material from

various projects that has not been included due to space constraints and in-

compatibility with the theme of the thesis, which nevertheless significantly im-

pacted my thinking. In the end my graduate studies conclude as they started,

in the study of guiding principles and specific techniques for good decision-

making.
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Abstract

The study of machine learning is concerned with the development and

analysis of general-purpose programs which receive data as input, extract use-

ful patterns and statistics, and automatically modify their output accordingly.

The purpose of many programs is to make consistent, justifiable decisions in a

timely manner based on as much relevant information as possible. In this work

we will focus particularly on programs that operate online, meaning programs

whose output is transformed into more information and fed back in as input to

create a sequence of conditional decisions. Online programs are particularly

useful for applications involving a great deal of complexity or uncertainty,

since they can break down difficult planning problems into easier steps, and

can collect additional information as needed. We will discuss techniques to ef-

ficiently update specific statistical models on infinite streams of data, coherent

data collection strategies to optimize program outputs for arbitrary objectives,

viii



and means for turning imperfect models into reliable, trustworthy decisions

based on provably valid predictions. In addition to fundamental contributions

to the body of machine learning methods, we will also present exemplar ap-

plications including public health surveillance, control of mechanical systems,

and experimental design for scientific discovery.
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Every thought emits a roll of the dice.

Stéphane Mallarmé

0
Introduction

The maturation of two technologies, the Internet and high-performance paral-

lel computing, has dramatically increased our ability to generate, distribute,

and process information. Flexible machine learning models trained on large

historical databases have gradually augmented or replaced hand-crafted algo-

rithms for computer vision (Chai et al., 2021), natural language processing
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(Sun et al., 2022), and recommendation systems (Khan et al., 2021). These

past successes have encouraged efforts to extend machine learning to every

conceivable application, including self-driving vehicles (Gupta et al., 2021),

supply chain management (Pournader et al., 2021), and drug design (Muller

et al., 2022; Kim et al., 2021). Many of these applications are online, meaning

operational data is continuously collected and processed as it arrives, which

presents two fundamental challenges. First, learned system components are

not fitted to static, offline datasets instead they are incrementally fitted to dy-

namic streams of data, requiring adjustments to the basic learning algorithms.

Second, in many applications machine learning systems are not passive recip-

ients of information, but agents whose actions (i.e. decisions) directly impact

future observations, introducing dilemmas such as the explore-exploit tradeoff.

The structure of this thesis is as follows: in Chapter 1 we review fundamen-

tal concepts of probability and statistics, Bayesian machine learning (partic-

ularly Gaussian processes), and basic online decision-making with Bayesian

optimization. Chapter 2 is devoted to the theme of making non-myopic deci-

sions based on newly available information. To that end we discuss techniques

for efficiently conditioning different sparse Gaussian process approximations

on infinite streams of data or self-generated “fantasy samples” with a constant

compute and memory footprint, with supplementary material in Appendix

A and B. The material for these sections was originally published in Stanton

et al. (2021) and Maddox et al. (2021c). The theme of Chapter 3 is making

coherent decisions, that is decisions based on coherent beliefs and preferences,

2



particularly in the context of biological sequence design, with supplementary

material in Appendix C. The material for these sections was originally pub-

lished in Stanton et al. (2022). Next the theme of Chapter 4 is making deci-

sions with reliably predictable outcomes, specifically decisions for which our

model can construct valid prediction sets. One notable feature of this chapter

is our exceptionally mild set of assumptions, in particular we do not assume

that our model is basically correct, instead we focus on accounting for uncer-

tainty relating to the hypothesis class itself, with supplementary material in

Appendix D. At the time of writing the material for these sections is under

review for publication. Finally in Chapter 5 we end with some specific conclu-

sions for the reader to take away, along with interesting directions for future

research.
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Probability [is] a concept that vexes philosophers,

a concept with two faces.

Ian Hacking

1
Preliminaries

In this chapter we introduce the basic concepts we will need for the following

chapters. Those less philosophically inclined may wish to skip to Chapter 1.2.

The exposition is brief by necessity, but we cite essential references and high-

quality tutorials for further reading. Some notation may differ from common

convention for holistic consistency between chapters or to avoid overloading
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specific symbols too frequently.

1.1 Statistical Foundations

In the beginning, there was a dataset, D = {(xi,yi)}n−1
i=0 . We consider each

datum (xi,yi) to be an objective observation of an instance of some event. In

general the event is signified by the tuple of variables (X,Y ). The word objec-

tive is fraught with philosophical difficulties, however for our purposes, an ob-

jective event need only be an entity of interest to a specific group of observers,

who have previously agreed upon its ontological nature (i.e. what the entity

is and is not), and the empirical means (i.e. senses and tools shared by the

group) by which to observe the entity if or when it occurs. Once an observa-

tion has been made, within this group of observers there is no debate as to

what is explicitly signified by the observation, and what is signified does not

depend on any characteristics of the observer (other than their membership of

the group) nor does it depend on the time the observation is perceived. This

definition accommodates traditional Western notions of truth such as corre-

spondence theory, as well as more skeptical perspectives such as those articu-

lated in Kuhn (1970).

Statistical inference is concerned with two distinct concepts, 1) the objective

frequencies with which potential observations occur over some number of rep-

etitions, and 2) our subjective preferences between different types of potential

observations. Given internally coherent preferences between observations (i.e.

preferences that satisfy properties like transitivity) and some fairly uncontro-
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versial axioms, we can logically deduce the need for internally coherent subjec-

tive beliefs regarding the plausibility of potential observations in order to act

in a way that is consistent with our preferences (Savage, 1972). By convention,

we act upon X, which we call the state, and observe the effect on the outcome

Y .

1.2 Bayesian Inference

Statistical inference begins by postulating a likelihood p(D|f) that defines a

relation between real observations and the idealized abstractions and assump-

tions we use to explain how those observations could have come about. Ex-

planations coalesce into hypotheses f ∈ F , where F represents the space of

all distinct possibilities we are able to express with this idealized structure.

Typically we think of hypotheses as functions f : X → Y, which is a way of

encoding the basic assumption that underlying the apparent randomness of

the world there are invariant relations between state and outcome that make

inductive inference possible.

Bayesian inference begins by specifying a prior p(f) which formally repre-

sents the degree to which a hypothesis f is plausible before seeing any real

data. Once we have D, we apply Bayes rule to obtain the Bayes posterior,

p(f |D) =
p(D|f)p(f)∫
p(D|f)p(f)df

, p(y|x, D) =

∫
p(y|f(x))p(f(x)|D)df, (1.1)

where p(f |D) and p(y|x, D) respectively represent the subjective plausibility

6



(i.e. credibility) of f overall, and of a potential outcome y for a specific input

x, given D.∗ By subjective plausibility, we mean the degree of coherence with

D, if our model assumptions do in fact hold (i.e. at least one element of our

hypothesis class actually is the process which generated our data).

A Bayesian β-credible set can be defined over both abstract hypotheses and

real outcomes, where β ∈ (0, 1] is the level of subjective confidence that the

credible set contains all relevant possibilities. For example a prediction set

Ycred ⊂ Y is credible at the level β if

β =

∫
y∈Ycred

p(y|x, D)dy.

A change to the model assumptions can (and often does) significantly affect

which possibilities are considered relevant, before and after seeing D.

1.3 Bayesian Machine Learning and Gaussian Processes

Though Bayesian inference is fairly simple conceptually, in practice comput-

ing Bayesian posteriors as defined in Eq. 1.1 is extremely difficult. In fact for

many commonly used machine learning models full Bayesian posteriors cannot

be exactly computed at all, and must be approximated instead. Notable excep-

tions are linear models and Gaussian processes (GPs), which have closed-form

posteriors for certain choices of likelihoods. See Bishop & Nasrabadi (2006)

for a thorough introduction to Bayesian linear regression, and Rasmussen &
∗Parametric models typically define the prior and posterior over F implicitly via the

model architecture and a prior and posterior over the model weights θ.
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Williams (2008) for a complete treatment of GPs.

Because we will make heavy use of GP regression models throughout this

thesis, we will briefly introduce them here. In this setting X ⊂ Rd and Y ⊂

Rm. There are several ways to derive a GP, for our purposes it is most useful

to see them as a prior over functions defined by a choice of mean function µ :

X → Rm and kernel function κθ : X × X → R+ with hyperparameters θ.

In particular, given a finite collection of inputs Xtrain = [x0 · · · xn−1]
⊤, the

outputs a := [f(x0) · · · f(xn−1)]
⊤ have the prior distribution

p(a|θ) = N (µa, Kaa),

where (µa)i = µ(xi) and (Kaa)ij = κθ(xi,xj). In shorthand a GP prior is

simply written p(f) = GP(µ, κθ). For clarity of notation and without loss of

generality, we typically take µ(x) = 0 for all x.

Since p(a|θ) is Gaussian, it has a natural conjugate Gaussian likelihood

p(y|f(x)) = N (f(x),Σ). This likelihood is often written as the generative

model y = f(x) + ε, ε ∼ N (0,Σ). Because the prior and likelihood are con-

jugate, the Bayes posterior over outputs b := [f(x′
0) · · · f(x′

q−1)] at a new

collection of inputs Xtest = [x′
0 · · · x′

q−1]
⊤ is again Gaussian, specifically

p(b|D) = N (mb|D, Sb|D),where

mb|D = Kba(Kaa + Σ)−1ya, (1.2)

Sb|D = Kbb −Kba(Kaa + Σ)−1Kab. (1.3)
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To fit a GP regression model to D, we optimize the kernel hyperparameters

θ to maximize the log-marginal likelihood of D,

log p(D|θ) = log

∫
p(ya|a)p(a|θ)da (1.4)

= −1

2

(
y⊤
a (Kaa + Σ)−1ya + log |Kaa + Σ|+ n log 2π

)
Although GPs are kernel-based models, there is a range of well-known meth-

ods to scale them to large offline datasets, notably inducing point methods

like stochastic variational GPs (SVGPs) which admit the use of stochastic op-

timizers (Hensman et al., 2013a). In Chapter 2 we discuss different approaches

to scaling GPs to online datastreams in great detail.

The inductive biases of a GP are primarily determined by the choice of

kernel. Most commonly used GP kernels (e.g. RBF or Matérn) rely on ℓ2

distance between inputs to determine the prior covariance between outputs.

When the inputs are low-dimensional (e.g. d = 10) such kernels work well,

but in high dimensions the ℓ2 norm is often a poor choice of distance metric

(Srinivas et al., 2010; Wang et al., 2016). This limitation has motivated the

development of deep kernel learning (DKL), which learns a low-dimensional

continuous embedding via an encoder such as a convolutional neural network

(CNN) (Wilson et al., 2016a).
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1.4 Bayesian Optimization

Bayesian optimization (BayesOpt) is an archtypical example of Bayesian deci-

sion theory applied to decision problems of the form

max
x∈X

(f0(x) · · · fm−1(x)).

BayesOpt has recently demonstrated great promise in the control of complex

systems and the design of sensitive experiments, with applications ranging

from hyperparameter tuning of large models, to control of lasers, to antibody

design (Chen et al., 2018; Duris et al., 2020; Moss et al., 2020; Maddox et al.,

2021a; Maus et al., 2022).

Conceptually BayesOpt is a simple combination of a utility function u(f(x), D)

and a Bayesian machine learning model (a surrogate) which computes p(f(x)|D).

GP regression models are often preferred as surrogates because their closed-

form posteriors are convenient to work with and because they tend to general-

ize well in data-scarce regimes when d is small. See Brochu et al. (2010) and

Frazier (2018) for a more detailed introduction.

BayesOpt alternates between inference and selection, comparing the ex-

pected utility Eb|D[u(b, D)] of potential queries (i.e. “test” points) to select

the next batch of observations, which are added to D to update p(b|D), com-

pleting one iteration of a repeating loop (Algorithm 1). BayesOpt literature of-

ten refers to the expected utility of a query point as its acquisition value, and

a function mapping a query to its acquisition value as an acquisition function
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Algorithm 1: The BayesOpt outer loop
Inputs: hypothesis space F , acquisition a, dataset D0.
for i = 0, . . . , imax − 1 do

Fit f̂ ∈ F to Di.
x∗
i = minx∈X a(x, f̂). ← the inner loop

Observe yi ∼ p(·|x∗
i ).

Di+1 = Di ∪ (x∗
i ,yi).

Pi+1 = nondominated(Di+1).
end
return Pimax

a : X → R,

a(x) =

∫
u(f(x), D)p(f(x)|D)df, (1.5)

There are two important considerations when it comes to choosing a utility

function for BayesOpt. First the utility function must account for the specific

needs of the task, such as batched queries, multiple objectives, multiple mea-

surement options with varying cost and quality, or multi-step planning hori-

zons. Second the utility function should be structured in a way such that the

resulting acquisition function can be efficiently optimized. The two considera-

tions are often in tension.

1.4.1 Example acquisition functions

Taking u(f(x), D) = [f(x) − maxyi∈D yi]+, where [g(·)]+ = max(g(·), 0),

yields the expected improvement (EI) acquisition function (Jones et al., 1998).

Other acquisition functions look ahead into the future to see how the model
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will change if we query a specific point, a procedure known as “fantasization”

(Hennig & Schuler, 2012; Wu & Frazier, 2016; Jiang et al., 2020a). Fantasiza-

tion is done by drawing samples from the current surrogate posterior at some

set of points and conditioning the surrogate on those samples. For example,

the batch knowledge gradient (qKG, Wu & Frazier, 2016; Balandat et al.,

2020a) is given by

u(f(x), D) := max
x′∈X

E
f(x′)∼p(·|D+x)

f(x′)−max
x′∈X

E
f(x′)∼p(·|D)

f(x′), (1.6)

where D+x := D ∪ {(x, f(x)}. Computing the first term requires condition-

ing the surrogate model on posterior samples at x, before optimizing through

predictions of the conditioned surrogate model.

If we can find a maximizer x∗ of a, then by definition x∗ will be Bayes-optimal

w.r.t. u. Bayes-optimality simply indicates whether a decision is coherent

with our posterior beliefs. Bayesian inference (and thus Bayes-optimality)

is not directly concerned with how those beliefs correspond to the external

world (De Finetti, 1975). The remainder of this thesis is devoted partly to ad-

dressing difficulties that arise when searching for Bayes-optimal decisions, and

partly to modifying the concept of Bayes-optimality itself to account for what

could be called meta-epistemic uncertainty, or uncertainty in our prior and

likelihood, without resorting to an infinite recursion of hierarchical models.
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The main interest of physical statistics lies in

fact not so much in the distribution of the phe-

nomena in space, but rather in their succession

in time.

Richard von Mises

2
Incrementally Conditioning Sparse

GP Posteriors

2.1 Motivation

The ability to repeatedly adapt to new information is a defining feature of in-

telligent agents. Indeed, these online or streaming settings, where we observe

13



data in an incremental fashion, are ubiquitous — from real-time adaptation in

robotics (Nguyen-Tuong et al., 2008) to click-through rate predictions for ads

(Liu et al., 2017).

2.2 Overview

Bayesian inference is naturally suited to the online setting, where after each

new observation, an old posterior becomes a new prior. However, these up-

dates can be prohibitively slow. For Gaussian processes, if we have already

observed n data points, observing even a single new point requires introducing

a new row and column into an n× n covariance matrix, which can incur O(n2)

operations for the predictive distribution and O(n3) operations for kernel hy-

perparameter updates.

Since Gaussian processes are now frequently applied in online settings, such

as Bayesian optimization (Yamashita et al., 2018; Letham et al., 2019), or

model-based robotics (Xu et al., 2014; Mukadam et al., 2016), this scaling is

particularly problematic. Moreover, despite the growing need for scalable on-

line inference, recent research on this topic is scarce.

Existing work has typically focused on data sparsification schemes paired

with low-rank kernel updates (e.g., Nguyen-Tuong et al., 2008), or sparse vari-

ational posterior approximations (Cheng & Boots, 2016; Bui et al., 2017a).

Low-rank kernel updates are sensible but still costly, and data-sparsification

can incur significant error. Variational approaches, while promising, can pro-

vide miscalibrated uncertainty representations compared to exact inference
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(Jankowiak et al., 2020a; Lázaro-Gredilla & Figueiras-Vidal, 2009; Bauer et al.,

2016), and often involve careful tuning of many hyperparameters. In the on-

line setting, these limitations are especially acute. Uncertainty representation

can be particularly crucial for determining the balance of exploration and ex-

ploitation in choosing new query points. Moreover, while tuning of hyperpa-

rameters and manual intervention may be feasible for a fixed dataset, it can

become particularly burdensome in the online setting if it must be repeated

after we observe each new point.

Intuitively, we ought to be able to recycle computations to efficiently update

our predictive distribution after observing an additional point, rather than

starting training anew on n + 1 points. However, it is extremely challenging to

realize this intuition in practice, for if we observe a new point, we must com-

pute its interaction with every previous point. In this paper, we show it is in

fact possible to perform constant-time O(1) updates in n, and O(p2) for p in-

ducing points, to the Gaussian process predictive distribution, marginal likeli-

hood, and its gradients, while retaining exact inference. We achieve this scal-

ing through a careful combination of caching, structured kernel interpolation

(SKI) (Wilson & Nickisch, 2015), and reformulations involving the Woodbury

identity. We name our approach Woodbury Inversion with SKI (WISKI). We

find that WISKI achieves promising results across a range of online regression

and classification problems, Bayesian optimization, and an active sampling

problem for estimating malaria incidence where fast online updates, exact in-

ference for calibrated uncertainty, and fast test-time predictions are partic-
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ularly crucial. The WISKI method and results were originally published in

Stanton et al. (2021).

As a motivating example, in Figure 2.1, we fit GPs with spectral mixture

kernels (Wilson & Adams, 2013) on British pound to USD foreign exchange

data.∗ In this task, we observe points one at a time, after observing the first

10 points in batch, and update the predictive distributions for WISKI, O-SVGP

and O-SGPR (Bui et al., 2017a), state-of-the-art streaming sparse variational

GPs. We illustrate snapshots after having observed n = 10, 20, and 30 points.

We see that WISKI is able to more easily capture signal in the data, whereas

O-SVGP tends to underfit and O-SGPR underfits on the random data set-

ting. In addition to the general tendency of stochastic variational GP (SVGP)

models to underfit the data and overestimate noise variance (Lázaro-Gredilla

& Figueiras-Vidal, 2009; Bauer et al., 2016), the variational posterior of an

O-SVGP is discouraged from adapting to surprising new observations (See Ap-

pendix A.2). We also see that O-SVGP particularly struggles when we observe

new points in a time-ordered fashion, which is a standard setup in the online

setting.

The initialization heuristics used to train SVGPs in the batch setting, such

as initializing the inducing points with k-means or freezing the GP hyperpa-

rameters at the beginning of training, are not effective for O-SVGPs since the

full dataset is not available. In order to obtain reasonable fits with O-SVGP
∗https://raw.githubusercontent.com/trungngv/cogp/master/data/fx/

fx2007-processed.csv, fourth column. We rescaled the inputs to [−1, 1] and standardized
the responses to 0 mean and unit variance.
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on even this motivating example, we carefully tuned tempering parameters

using generalized variational inference (Knoblauch et al., 2019), executed 6 op-

timization steps for each new observation, and trained in batch on the first 10

points. WISKI, by contrast, requires no tuning, only 1 optimization step for

each new observation, and does not require any batch training to find reason-

able solutions.

These issues with O-SVGP∗ are particularly visible when we move beyond

time series. In Figure 2.2, we plot the incremental RMSE on a held out test

set on the UCI powerplant dataset, while optimizing for only a single step as

we observe new data points, finding that O-SVGP underfits and sub-optimal

solution, while WISKI matches the performance of an exact GP also fit incre-

mentally. The exact GP also uses pre-conditioned conjugate gradients (Gard-

ner et al., 2018a) here. However, WISKI and O-SVGP are both constant time

(shown in the left panel), while using an exact GP with Cholesky factorization

is cubic time, and using CG with the GP is quadratic time. Both are much

slower than WISKI and O-SVGP after t = 5000.

Intelligent systems should be able to quickly and efficiently adapt to new

data, adjusting their prior beliefs in response to the most recent events. These

characteristics are desirable whether the system in question is controlling the

actuators of a robot, tuning the power output of a laser, or monitoring the

changing preferences of users on an online platform. What these applications

share in common is a constant stream of new information. In this paper, we
∗O-SGPR has different weaknesses, including numerical instability. We further consider

O-SGPR in our larger study of incremental regression.
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are interested in efficient conditioning, meaning that we wish to efficiently up-

date a posterior distribution after receiving new data.

The ability of Gaussian process (GP) regression models to condition on new

data in closed form has made them a popular choice for Bayesian optimization

(BO), active learning, and control (Frazier, 2018). All of these settings share

similar characteristics: there is an “outer loop”, where new data is acquired

from the real world (e.g. an expensive simulator), interleaved with an “inner

loop”, which chooses where to collect data. In BO, for example, the “inner

loop” is the optimization of an acquisition function evaluated using a surro-

gate model of the true objective. Simple acquisition functions, e.g. expected

improvement (EI), consider only the current state of the surrogate, while more

sophisticated acquisition functions “look ahead” to consider the effect of hypo-

thetical observations on future surrogate states. One such acquisition func-

tion, batch knowledge gradient (qKG), defines the one-step Bayes-optimal

data batch as the batch that maximizes the expected surrogate maximum af-

ter the batch has been acquired (Balandat et al., 2020a; Wu & Frazier, 2016).

Advanced acquisition functions like qKG require the surrogate to have both

efficient posterior sampling and efficient conditioning on new data.

GP regression has two major limitations that have prevented its large scale

deployment for online decision-making. First, the computational and mem-

ory consumption of exact GPs grows at least quadratically with the amount

of data (Gardner et al., 2018b; Rasmussen & Williams, 2008), generally lim-

iting their usage to BO problems with fewer than 1, 000 function evaluations
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(Frazier, 2018; Balandat et al., 2020a; Wang et al., 2018). Second, they are

limited to applications that have continuous real-valued responses, enabling

modelling with solely a Gaussian likelihood. Stochastic variational Gaussian

processes (SVGPs) (Hensman et al., 2013b) have constant computational and

memory footprints and are applicable to non-Gaussian likelihoods, but they

sacrifice closed form expressions for updated posteriors on receiving new data.

The SVGP posterior is optimized through the evidence lower bound (ELBO).

In the online setting, training with the ELBO has two primary difficulties: the

need to specify a fixed number of observations to properly scale the ELBO

gradient (Broderick et al., 2013) and the need to adjust the inducing points

without looking at past data (Bauer et al., 2016; Bui et al., 2017a). Thus, we

are presented with a choice between the simplicity and analytic tractability of

exact GPs and the scalability and flexibility of SVGPs.

In this work, we develop Online Variational Conditioning (OVC) to allow

SVGPs to be conditioned on-the-fly, as shown in Figure 2.3. In the top row

of each subplot, we fit the data points shown in red, shifting to another batch

of data points in the bottom row. We use an exact GP in Figure 2.3a, with

exact conditioning shown in the bottom panel. The SVGP emulates the ex-

act GP very well before seeing the new data and again after conditioning on

the new data by using OVC (Figure 2.3b). In Figure 2.3c, we consider a non-

Gaussian data model (a Gaussian copula volatility model (Wilson & Ghahra-

mani, 2010)), where we cannot use exact GPs; the SVGP is still able to up-

date its posterior over the latent volatility in response to new data without
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“forgetting” old observations. OVC is inspired by a new, simple rederivation

of streaming sparse GPs (O-SGPR), originally proposed by Bui et al. (2017a).

OVC makes SVGPs truly compelling models for online decision-making, aug-

menting their existing strengths with efficient, closed-form conditioning on

new data points. In short, our contributions, originally published in Maddox

et al. (2021c), are:

• The development of OVC, a novel method to condition SVGPs on new

data without re-optimizing the variational posterior through an evidence

lower bound.

• OVC provides both stable inducing point initialization for SVGPs while

enabling the inducing points and variational parameters to update in

response to the new data.

• Enabling the effective application of SVGPs, through OVC, in look-

ahead acquisitions in BO for black-box optimization, controlling dynami-

cal systems, and active learning.

Please see Appendix B.1 for discussion of the limitations and broader im-

pacts of our work. Our code is available at https://github.com/wjmaddox/

online_vargp.
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(d) O-SVGP, randomly-ordered observations
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(e) O-SGPR, time-ordered observations
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(f) O-SGPR, randomly-ordered observations

Figure 2.1: Online GP regression on exchange rate time series data (N = 40). The shaded
regions in each panel corresponds to a 95% credible interval. In each subplot, the left sub-
panel shows the predictive distribution of the corresponding model after training in batch on
an initial set of 10 observations. The middle and right subpanels show the evolution of the
predictive distribution after 10 and 20 online updates, respectively. The left plots, (a,c,e),
show WISKI, O-SVGP, and O-SGPR using spectral mixture kernels (Wilson & Adams, 2013)
trained on observations in a time-ordered fashion. O-SVGP heavily overfits to the initial
data by interpolating the first batch of data points, and struggles to recover on the next
batches. WISKI and O-SGPR perform well in this situation by picking up the signal on the
first batches and updating the mean as the data comes in. The right plots, (b,d,f) show the
methods trained on observations in a randomly ordered fashion. Here, O-SVGP is still very
under-confident, while O-SGPR clumps its inducing points in the middle of the data. By com-
parison, WISKI learns more of the high frequency trend than either variational approach.
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Figure 2.2: Left: Incorporating new observations becomes increasingly expensive for exact
GPs (Exact-Cholesky), even when preconditioned conjugate gradients (Exact-PCG), as quan-
tified in the left panel by the wall-clock time per iteration on the UCI Powerplant dataset.
Variational GPs (O-SVGP) are an economical alternative by virtue of being constant time.
WISKI has the constant-time profile of a variational method, but retains exact inference, is
simple to train, and does not underfit. Right: RMSE on the UCI power plant dataset. Shown
are mean and two standard deviations over 10 trials. O-SVGP tends to overestimate noise
and converges to a sub-optimal solution, while WISKI matches the performance of the exact
methods trained in an incremental fashion.
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(c) SVGP + OVC volatility
model

Figure 2.3: An exact GP updates its predictive distribution after conditioning on new data
points (a, moving from top row to bottom row). With OVC, we can condition SVGPs on
both Gaussian responses (b) and non-Gaussian models (c) such as the Gaussian copula
volatility model (Wilson & Ghahramani, 2010).
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2.3 Scaling GPs in the Offline Setting

2.3.1 Caching and Parallelism

The cost of exact GP regression is dominated by solving systems of linear

equations in Eq. (1.2), (1.3), and (1.4), resulting in O(mn3) computational

complexity during training and O(qmn2) complexity at test time. When re-

peatedly computing p(b|D) at different sets of query points Xtest, it is more

efficient to cache the terms which depend only on the training data.∗ Specifi-

cally, we store v := (Kaa + Σy)
−1ya (the predictive mean cache) and RR⊤ :=

(Kaa + Σy)
−1 (the root decomposition cache), resulting in simplified forms for

the predictive distribution, mb|D = Kbav and Sb|D = Kbb −KbaRR⊤Kab.

The complexity of the root decomposition is O(kn2), requiring k ≤ n itera-

tions of the Lanczos algorithm (Lanczos, 1950) and a subsequent eigendecom-

position of the resulting k×k symmetric tridiagonal matrix. Further details on

Lanczos decomposition and the caching methods of (Pleiss et al., 2018a) are in

Appendix A.1.

2.3.2 Online Conditioning and Low-Rank Matrix Updates

GP models are conditioned on new observations through Gaussian marginal-

ization (Williams & Rasmussen, 2006, Chapter 2). Suppose we have past ob-

servations D = {(x′
i, y

′
i)}ni=1 used to make predictions via p(y|x, D). We sub-

sequently observe a new data point (xn, yn). For clarity, let a′ = [f(x′
0) · · ·

∗We refer to entities that can be computed, stored in memory, and used in subsequent
computations as caches. We use orange font to identify which cached expressions.

23



f(x′
n−1)]

⊤, b = [f(xn)]
⊤. The new kernel matrix is

Kaa =

Ka′a′ Ka′b

Kba′ Kbb

 (2.1)

We would like to update our posterior predictions to incorporate the new data

point without recomputing our caches that are not hyper-parameter depen-

dent from scratch. If the hyperparameters are fixed, this can be a O(n2) low-

rank update to the root decomposition cache (e.g. a Schur complement update

or low rank Cholesky update to a decomposition of R). If we additionally wish

to update hyper-parameters, we must recompute the log marginal likelihood

in Eq. 1.4, which costs O(n3). Similarly, if we naively use the SKI approxima-

tions in Eq. 2.1 we additionally have an O(n) cost for both adding a new data

point and to update the hyper-parameters afterwards. Thus, as n increases,

training and prediction will slow down (Figure 2.2).

Adding a new observation is equivalent to adding a single row and column

to Ka′a′ and an entry to y, which enables efficient low-rank updates to the

predictive caches (Osborne, 2010; Gardner et al., 2018b; Pleiss et al., 2018b;

Jiang et al., 2020a). We build on previous work on scaling GP training and

prediction by exploiting kernel structure and efficient GPU matrix vector mul-

tiply routines to quickly compute gradients (CG) of Eq. 1.4 for training, and

by caching terms in Eq. 1.2 and Eq. 1.3 for fast prediction (Gardner et al.,

2018a). Conjugate gradient methods improve the asymptotic complexity of

GP regression and to O(jn2), where j is the number of CG steps used. These
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recent advances in GP inference have enabled exact GP regression on datasets

of up to one million data points in the batch setting (Wang et al., 2019).

2.3.3 Sparse Kernel Approximations

GPs are often sparsified through the introduction of inducing points Z ∈ Rp×d

(also known as pseudo-inputs), which are small subset of fixed points (Snel-

son & Ghahramani, 2006). In particular, Wilson & Nickisch (2015) proposed

structured kernel interpolation (SKI) to approximate the kernel matrix as

Ka′a′ ≈ K̃a′a′ = Wa′KuuW
⊤
a′ , (2.2)

where u = [f(z0) · · · f(zp−1)] and Wa′ = [w(x′
0, Z) · · · w(x′

n−1, Z)]
⊤ is an

n × p interpolation matrix. Each vector (Wa′)i is sparse, containing 4d non-

zero entries, where d is the dimensionality of the input data. SKI places the

inducing points on a multi-dimensional grid. When kθ is stationary and fac-

torizes across dimensions, Kuu can often be expressed as a Kronecker product

of Toeplitz matrices, leading to fast multiplies. Overall multiplies with K̃a′a′

take O(n + g(p)) time, where g(p) ≈ p (Wilson & Nickisch, 2015), compared

to the O(np2 + p3) complexity associated with most inducing point methods

(Quinonero-Candela & Rasmussen, 2005). In short, SKI provides scalable

exact inference, through introducing an approximate kernel that admits fast

computations.

Pleiss et al. (2018a) propose to cache (i.e. to store in memory) all parts of

the predictive mean and covariance that can be computed before prediction,
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enabling constant time predictive means and covariances. Directly substitut-

ing the SKI kernel matrix, K̃a′a′ , into Eq. 1.2, the predictive mean becomes

mb|D = WbKuuW
⊤
a′

(
K̃a′a′ + σ2I

)−1

ya′︸ ︷︷ ︸
v

,

where v is the predictive mean cache. Similarly, Eq. 1.3 becomes

Sb|D = Kbb −WbKuuW
⊤
a′

(
K̃a′a′ + σ2I

)−1

Wa′Kuu︸ ︷︷ ︸
V V ⊤

W⊤
b ,

where where V = KuuW
⊤
a′R, which we call the predictive covariance cache.∗

2.3.4 Sparse Variational Posterior Approximations

We now briefly review variational sparse Gaussian processes, introducing sparse

Gaussian process regression (SGPR), sparse variational Gaussian processes

(SVGP), and streaming sparse GPs (O-SGPR). Please see Appendix B.2 for

further background and Appendix B.2.1 specifically for further related work.

Variational sparse GPs reduce the computational burden of GP inference

through sparse approximations of the kernel matrix. For further reference,

see Matthews (2017) and Van der Wilk (2019). These methods define a vari-

ational distribution ϕ(u) = N (mu, Su) over the inducing outputs u = [f(z1)

· · · f(zp)]
⊤, defined at inducing inputs Z = [z1, · · · , zp]⊤, where zi ∈ X .

The variational methods we discuss here assume the latent function values
∗Note that for exact GP regression V = R.
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f(x), f(x′) are conditionally independent given u and x,x′ /∈ Z, so as to

cheaply approximate the predictive posterior p(b|D) ≈ q(b) = N (mb|u, Sb|u).

Like exact GP regression, we can compute q(b) in closed form (given mu, Su),

mb|u := KbuK
−1
uumu︸ ︷︷ ︸
v

, (2.3)

Sb|u := Kbb −KbuK
−1
uu(Kuu − Su)K

−1
uu︸ ︷︷ ︸

V V ⊤

Kub, (2.4)

reducing the test-time complexity from O(n3) to O(np2), which is a significant

improvement if p≪ n.∗

Unlike exact GP regression, mu and Su are viewed as variational parameters

to be optimized. There are two common approaches to finding optimal varia-

tional parameters mu and Su. The seminal work of Titsias (2009a) proposed

sparse GP regression (SGPR), which optimizes mu and Su in closed form, re-

sulting in a ”collapsed” evidence lower bound† (ELBO) that only depends on

θ and Z. The computational cost of each gradient update to the remaining

model parameters is still linear in n, and like exact GP regression, SGPR re-

quires a Gaussian likelihood. Stochastic variational GPs (SVGPs) remedies

both these limitations by using gradient-based optimization to learn mu and

Su alongside Z and θ (Hensman et al., 2013b; 2015). The SVGP objective is

an “uncollapsed” ELBO which decomposes additively across the training ex-
∗The SGPR covariance cache we use is slightly different from the implementation in the

prediction strategy in GPyTorch, which stores Ka′uK
−1/2
uu . However, they reduce to the same

strategy.
†A lower bound of the true GP marginal log-likelihood
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amples, allowing gradients to be estimated from minibatches of data, reducing

the complexity of each gradient update to O(qp2 + p3), where q is the mini-

batch size.

Here we should emphasize the distinction between constant-time minibatch

gradients, and constant-time conditioning. Given an SVGP already trained on

some existing data, conditioning jointly on both the old and new data requires

storing all the data and making multiple gradient updates to the variational

parameters. As the size of the dataset grows, so does the number of gradient

steps needed. In contrast by constant-time conditioning we mean a procedure

that takes a posterior conditioned on existing data and produces a new poste-

rior conditioned jointly on the old and new data with a fixed amount of com-

pute and memory, regardless of the number of past observations.

One example of constant-time conditioning is found in Bui et al. (2017a),

who proposed streaming sparse GPs (which we call online SGPR, or O-SGPR,

to distinguish from sparse spectrum GPs (Lázaro-Gredilla et al., 2010)) for in-

cremental learning. We extend their work, providing an alternative, simpler

derivation of their model that highlights the connection with SGPR (Titsias,

2009a). Furthermore, our perspective enables us to construct a principled ap-

proach to updating inducing point locations as new data arrives, that prevents

the “forgetting” of old data induced by the resampling heuristic used by Bui

et al. (2017a).
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2.4 Related Work

Use of sparse GPs in BO: Sparse GPs have not seen wide adoption in

the BO community, with only several preliminary studies that have mostly

used basic acquisitions. Nickson et al. (2014) and Krityakierne & Ginsbourger

(2015) used expected improvement (EI) with SGPR on several test problems,

while McIntire et al. (2016) proposed a sparse GP method using EI to tune

free electron lasers (Duris et al., 2020). Stanton et al. (2021) proposed WISKI,

an online implementation of a scalable kernel approach called SKI (Wilson

& Nickisch, 2015), for low-dimensional BO problems using batch upper confi-

dence bound (qUCB) (Balandat et al., 2020a).

2.4.1 Prior Approaches

Despite its timeliness, there has not been much recent work on online learn-

ing with GPs. Older work considers sparse variational approximations to GPs

in the streaming setting. Csató & Opper (2002) proposed a variational sparse

GP based algorithm in O(np2 + p3) time, specifically for deployment in stream-

ing tasks; however, it assumes that the hyperparameters are fixed. Nguyen-

Tuong et al. (2008) proposed local fits to GPs with weightings based on the

distance of the test point to the local models. More recently, Koppel (2019)

extended the types of distances used for these types of models while using

an iteratively constructed coreset of data points. Evans & Nair (2018) pro-

posed a structured eigenfunction based approach that requires one O(n) com-

putation of the kernel and uses fixed kernel hyper-parameters but learns in-
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terpolation weights. Cheng & Boots (2016) proposed a variational stochastic

functional gradient descent method in incremental setting with the same time

complexity; however, like stochastic variational GPs (Hensman et al., 2013c),

Cheng & Boots (2016) assumes the number of data points the model will see

is known and set before training begins. Hoang et al. (2015a) proposed a sim-

ilar variational natural gradient ascent approach, but assumed that the hyper-

parameters are fixed during the training procedure, a major limitation for flex-

ible kernel learning.

2.4.2 Streaming SVGP and Streaming SGPR

The current state-of-the-art for streaming Gaussian processes is the sparse

variational O-SVGP approach of Bui et al. (2017a) and its “collapsed” non-

stochastic variant, O-SGPR, which does not use an explicit variational distri-

bution, like its batch equivalent, SGPR (Titsias, 2009b).

O-SVGP: Unlike its predecessors, O-SVGP is fully compatible with online

inference, since it has no requirements to choose the number of data points a

priori, and it can update both model parameters and inducing point locations;

however, it has the same time complexity as its predecessors: O(qp2 + p3),

where q is the size of the batch used to update the predictive distribution and

model hyper-parameters. Bui et al. (2017a)’s experiments primarily focused

on large batch sizes — practically q = O(n) — rather than the incremental

streaming setting where q << n. A major limitation of variational methods

in the streaming setting is that conditioning on new observations effectively

30



requires the model parameters to be re-optimized to a minima after every new

batch, increasing latency. In Appendix A.2 we include a detailed discussion

of the requirements of the original O-SVGP algorithm, and provide a modi-

fied generalized variational update by downweighting the prior by a factor of

β < 1 better adapted to the streaming setting to have a strong baseline for

comparison. We compare to the generalized O-SVGP implementation in our

experiments as O-SVGP.

O-SGPR: O-SGPR is also potentially promising but like O-SVGP falls prey

to several key limitations. First, O-SGPR relies on analytic marginalization

and so can only be used for Gaussian likelihoods. In Figure 2.1, we imple-

mented the O-SGPR bound in GPyTorch (Gardner et al., 2018a) and it has

fair performance for both the random ordering and time ordering settings,

though not as good as WISKI. However, this performance comes with two

caveats. First, we need to re-sample the inducing points to include some of

the new data at each iteration, as is done in Bui et al. (2017a)’s implementa-

tion. Second, we found that even in double precision we needed to add a large

amount of jitter ϵ = 0.01, while doing the required Cholesky decompositions

(there is a matrix subtraction) to prevent numerical instability.

2.5 WISKI: Incrementally Conditioning SKI-GPs in Constant Time

We now propose WISKI, which through a careful combination of caching,

SKI, and the Woodbury identity, achieves constant time (in n) updates in the
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streaming setting, while retaining exact inference. To begin, we present two

key identities that result from the application of the Woodbury matrix iden-

tity to the inverse of the updated SKI approximated kernel, K̃a′a′ , after having

received n data points. First, we can rewrite the SKI kernel inverse as

(K̃a′a′ + σ2I)−1 = (Wa′KuuW
⊤
a′ + σ2In)

−1

=
1

σ2
I − 1

σ2
Wa′Ma′W⊤

a′ . (2.5)

Ma′ : = (σ2K−1
uu +W⊤

a′Wa′)−1. (2.6)

Second, we observe that W⊤
a′Wa′ is a sum of outer products,

W⊤
a′Wa′ =

n−1∑
i=0

w(xi, Z)w(xi, Z)
⊤

⇒M−1
a = σ2K−1

uu +W⊤
a′Wa′ +W⊤

b Wb,

= M−1
a′ +W⊤

b Wb. (2.7)

If the batch size is small, then Eq. 2.7 is a low-rank update that can be effi-

ciently computed.

Computing Eq. 2.7 as written requires explicit computation of K−1
uu . In

general, Kuu will have exploitable algebraic structure since Z is a dense grid,

which yields fast matrix inversion algorithms; however, the inverse will be

very ill-conditioned because many kernel matrices on gridded data have super-

exponentially decaying eigenvalues (Bach & Jordan, 2002). We will instead fo-

cus on reformulating SKI into expressions that depend only on Kuu, W , and y

32



with a constant O(p2) memory footprint and which can be computed in O(p3)

time.

2.5.1 Computing the Marginal Log-Likelihood, Predictive Mean and

Predictive Variance

Substituting Eq. (2.5) into Eqs. (1.4), (1.2), and (1.3), we obtain the follow-

ing expressions for the marginal log-likelihood (MLL), predictive mean, and

predictive variance∗:

log p(D|θ) = − 1

2σ2
(y⊤

a ya − y⊤
a WaMaW

⊤
a ya)−

1

2

(
log |Kuu| − log |Ma|+ (n− p) log σ2

)
, (2.8)

mb|D = WbMaW
⊤
a ya, (2.9)

Sb|D = Kbb − σ2WbMaW
⊤
b . (2.10)

For all derivations see Appendix A.1. We begin by constructing a rank r

root decomposition of the matrix W⊤
a Wa ≈ LL⊤, along with the factorization

of the (pseudo-)inverse, (W⊤W )† = JJ⊤. The root decomposition LL⊤ can be

a full Cholesky factorization (r = p) for relatively small p (i.e. p ≤ 1000) or an

approximate Lanczos decomposition for larger p, at a one-time cost of O(p2r).

Applying the Woodbury matrix identity to Eq. (2.6) and substituting LL⊤ for
∗A similar result holds for fixed noise heteroscedastic likelihoods as well. See Appendix

A.1.5 for further details.
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W⊤
a Wa, we have

Ma = σ−2Kuu − σ−4KuuLQ
−1
a L⊤Kuu, (2.11)

Qa := Ip + L⊤σ−2KuuL. (2.12)

Q−1
a L⊤ is a r × r system, so directly computing Eq. (2.11) requires O(r2p)

time for the solve using conjugate gradients, O(rp log p) time for the matrix

multiplications with Kuu if it has Toeplitz structure, and O(p2) for the dense

matrix additions, and O(kp2) for the root decomposition of W⊤W , for a final

total of O(r2p + kp2). However, we do not explicitly store the matrix M as

doing so would require p solves of a r × r system since L ∈ Rp×r.

Eqs. (2.8) - (2.10) involve computations of the form

Mac = σ−2Kuuc− σ−4KuuLQ
−1
a L⊤Kuuc,

which can be computed using only a single solve against the matrix Qa via

first multiplying out h = σ−2LKuuc, and then computing Q−1
a h. Applying

the matrix determinant identity to log |Ma| results in a simplified expression

in terms of log |Q|. Taking c = W⊤
a y, we obtain a practical expression for the

MLL,

log p(D|θ) = − 1

2σ2

(
y⊤
a ya − y⊤

a WaKuuW
⊤
a ya

+h⊤Q−1
a h
)
− 1

2

(
− log |Qa|+ (n− p) log σ2

)
. (2.13)
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Computing h costs O(p log p + rp), so computing the two quadratic forms are

O(p log p + p) and O(jr2) respectively, assuming j steps of conjugate gradients.

We use stochastic Lanczos quadrature to compute the log determinant of |Q|

which costs O(jr2) (Gardner et al., 2018a). Overall, computation of the MLL

becomes O(rp+ p log p+ jr2).

The predictive mean is similarly computed by taking c = W⊤
a ya, resulting in

the expression

mb|D = σ−2WbKuu(c− σ−2LQ−1
a h). (2.14)

Similarly taking c = W⊤
b , we derive the predictive covariance

Sb|D = Kbb −WbKuu(c− σ−2LQ−1
a h). (2.15)

2.5.2 Conditioning on New Observations

When we observe a new batch of observations at time t, we need to update

(W⊤
a ya)t, (y⊤

a ya)t, and LtL
⊤
t . The update to the first two terms is simple:

(W⊤
a ya)t+1 = (W⊤

a ya)t + (W⊤
b yb)t (2.16)

(y⊤
a ya)t+1 = (y⊤

a ya)t + y⊤
byb (2.17)

We can update Lt in O(bpr) time by exploiting the low-rank (for small b)
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structure of the expression

(W⊤
a Wa)t+1 = (W⊤

a Wa)t + (W⊤
b Wb)t

Recalling that JtJ⊤
t = (W⊤W )†t , let p = Jt

⊤Wb. We compute the decomposi-

tion BB⊤ = Ir + J⊤
t WbW

⊤
b Jt and obtain the expression for the updated root

Lt+1 = LtB. Since BB⊤ is a decomposition of Ir plus a rank-b correction, it

can be computed in O(br) time. Since the updates to the first two caches are

O(b) and O(bp), respectively, the overall complexity of conditioning on a new

observation is O(pr2). Further details and an extended proof are given in Ap-

pendix A.1.

2.5.3 Updating Kernel Hyperparameters

Conventionally, learning the kernel hyperparameters θ of a GP online presents

two major challenges. First, the basic form of the gradient of the MLL naively

costs at least O(n), even if scalable methods are employed. Second, after a pa-

rameter update, any cached terms that depend on the kernel matrix must be

recomputed (e.g. a new root decomposition of (Kaa + σ2)−1). The reformula-

tion of the MLL in Eq. (2.13) addresses the first challenge, with a complexity

of O(rp + p log p + jr2) (after computing the necessary caches). To address the

second challenge, we observe that the combination of the SKI approximation

to the kernel matrix and the Woodbury matrix identity in Section 2.5.1 has al-

lowed us to reformulate GP inference entirely in terms of computations whose

cost depends only on the number of inducing points and the rank of the ma-
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(a) Skillcraft
(n = 2855)

(b) Powerplant
(n = 8182)

(c) Elevators
(n = 14193)

(d) Protein
(n = 39100)

(e) 3DRoad
(n = 391000)

Figure 2.4: Online homoskedastic regression on UCI datasets. We compare to local GPs
(LGP), O-SGPR, O-SVGP, and exact GPs. Due to memory constraints or numerical issues for
other methods, only O-SVGP and WISKI were easily capable of running on the larger tasks
(Protein and 3DRoad). WISKI has comparable accuracy to exact methods, with comparable
runtime to scalable approximations like OSVGP. Top: Test set NLLs. Bottom: Test set
RMSEs.

trix decompositions (which is at most p, and typically much less than p). As a

result, we can recompute the necessary caches as needed without any increase

in computational effort as n increases.

The computational efficiency of SKI is a direct result of the grid structure

imposed on the inducing points. The reduced computational complexity comes

at the cost of memory complexity that is exponential in the dimension of the

input. In practice, if the input data has more than three or four dimensions,

the inputs must be projected into a low-dimensional space. The projection

may be random (Delbridge et al., 2020) or learned (Wilson et al., 2016b), de-

pending on the requirements of the task. If the projection is learned, then the

parameters ϕ of the projection operator h are treated as additional kernel hy-

perparameters and trained through the marginal log-likelihood.
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In the batch setting the interpolation weights Wa are updated after every

optimization iteration to adapt to the new projected features h = [hϕ(x0)

· · ·h(ϕxn−1)]
⊤. In the online setting, updating Wa for every previous obser-

vation would be O(n). Since we cannot update the interpolation weights for

old observations, the gradient for the projection parameters at time t can be

rewritten as follows:

∇ϕL(ϕ) = ∇ϕ
1

2

(
(y⊤W )tMt−1(W

⊤y)t

− 1

1 + v⊤w

(
v⊤
t (W

⊤y)t
)2 − log(1 + vtwt)

)
, (2.18)

wt = w(h(xt;ϕ)), vt = Mt−1wt,

(W⊤y)t = (W⊤y)t−1 + ytwt.

The gradient in Eq. (2.18) will move the projection parameters ϕ in a direc-

tion that maximizes the marginal likelihood, assuming w1:t−1 are fixed. That

is, only projections on new data are updated, while the old projections remain

fixed. In contrast to the batch setting, where ϕ is jointly optimized with θ, the

online update is sequential; whenever a new observation is received ϕ is up-

dated through Eq. (2.18), then the GP is conditioned on (h(xt;ϕt), yt), and

finally θ is updated through Eq. (1.4). See Appendix A.1.4 for the full deriva-

tion.
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2.6 WISKI: Empirical Results

To evaluate WISKI, we first consider online regression and binary classifica-

tion. We then demonstrate how WISKI can be used to accelerate Bayesian

optimization, a fundamentally online algorithm often applied to experiment

design and hyperparameter tuning (Frazier, 2018). Finally we consider an ac-

tive learning problem for measuring malaria incidence, and show that the scal-

ability of WISKI enables much longer horizons than a conventional GP.

We compare against exact GPs (no kernel approximations), O-SGPR, O-

SVGP (Bui et al., 2017a), sparse variational methods that represents the cur-

rent gold standard for scalable online Gaussian processes, and local GPs (LGPs)

(Nguyen-Tuong et al., 2008). All experimental details (hyper-parameters, data

preparation, etc.) are given in Appendix A.3, where we also include ablation

studies on the β parameter for O-SVGP as well as the the number of induc-

ing points (as we had to modify it to achieve good results in the incremental

setting for O-SVGP), m, for WISKI and O-SVGP. Unless stated otherwise,

shaded regions in the plots correspond to µ± 2σ, estimated from 10 trials.

2.6.1 Regression

We first consider online regression on several datasets from the UCI reposi-

tory (Dua & Graff, 2017). In each trial we split the dataset into a 90%/10%

train/test split. We scaled the raw features to the unit hypercube [−1, 1]d

and normalized the targets to have zero-mean and unit variance. Each model

learned a linear projection from Rd to R2 that was transformed via a batch-
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norm operation and the non-linear tanh activation to ensure that the features

were constrained to [−1, 1]2. Each model learned an RBF-ARD kernel on the

transformed features, except on the 3DRoad dataset, which did not require

dimensionality reduction. We used the same number of inducing points for

WISKI, O-SGPR, and O-SVGP and set nmax = m for local GPs. The mod-

els were pretrained on 5% of the training examples, and then trained online

for the remaining 95%. When adding a new data point, we update with a sin-

gle optimization step for each method, such that the runtime is similar for the

scalable methods. Since O-SVGP can be sensitive to the number of gradient

updates per timestep, in Figure A.2 in the Appendix we provide results for an

ablation.

We show the test NLL and RMSE for each dataset in Figure 2.4. For the

two largest datasets we only report results for WISKI and O-SVGP. We found

that O-SGPR was fairly unstable numerically, even after using an exception-

ally large jitter value (0.01) and switching from single to double precision. The

exact baseline and the WISKI model overfit less to the initial examples than

O-SGPR or O-SVGP. Note that O-SVGP is a much stronger baseline in this

experiment since the observations are independently observed than would typi-

cally be the case for correlated time-series data, as seen in Figure 2.1.

2.6.2 Classification

We extend WISKI to classification though the Dirichlet-based GP (GPD) clas-

sification formulation of Milios et al. (2018), which reformulates classification
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(a) Banana (n = 400) (b) SVM Guide 1 (n = 3000)

Figure 2.5: A comparison of Dirichlet-based exact and WISKI GP classifiers against an O-
SVGP with a binomial likelihood. The exact and WISKI models overfit less to the initial
data and ultimately match the performance of their hindsight counterparts trained on the
full dataset, shown as a dotted line.

as a regression problem with a fixed noise Gaussian likelihood. Empirically

the approach has been found to be competitive with the conventional soft-

max likelihood formulation. In Figure 2.5 we compare exact and WISKI GPD

classifiers to O-SVGP with binomial likelihood on two binary classification

tasks, Banana∗ and SVM Guide 1 (Chang & Lin, 2011). Banana has 2D fea-

tures, and SVM Guide has 4D features, so we did not need to learn a projec-

tion. As in the UCI regression tasks, WISKI and O-SVGP both had 256 in-

ducing point, each model used an RBF-ARD kernel, and the classifiers were

pretrained on 5% of the training examples and trained online on the remain-

ing 95%. In both cases the WISKI classifier outperformed the O-SVGP base-

line, and matched the accuracy of the the exact baseline.
∗https://raw.githubusercontent.com/thangbui/streaming_sparse_gp/master/data
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(a) Bayesian optimization. (b) Active learning,
RMSE.

(c) Active learning, fantasy
points.

Figure 2.6: (a): Objective value as a function of cumulative time and time per iteration
on the Levy test problem with noise standard deviation 10.0, while performing Bayesian op-
timization with EI acquisition for 1500 steps with a batch size of 3 so that by the end 4500
data points have been acquired. WISKI allows rapid updates of the posterior surrogate objec-
tive out to thousands of observations, while preserving the rapid convergence rate and asymp-
totic optimality of the exact GP. (b): RMSE on the test set after choosing new points either
randomly or with qnIPV (for WISKI and exact GPs) or by the maximal posterior variance
(for O-SVGP). WISKI is able to continue improving the downstream error throughout the
entire experiment matching the performance of the exact GP, while O-SVGP’s performance
flatlines. We also compare against the RMSE of models that have data points randomly se-
lected (shown with Random in the legend). (c): The test set (navy), as well as points chosen
for all three methods with initial points (red). WISKI and the exact GP query the entire sup-
port, while O-SVGP queries clump together.

2.6.3 Bayesian Optimization

In Bayesian optimization (BO) one optimizes a black-box function by itera-

tively conditioning a surrogate model on observed data and choosing new ob-

servations by optimizing an acquisition function based on the model posterior

(Frazier, 2018). Thus, BO requires efficient posterior predictions, updates to

caches as new data are observed, and hyperparameter updates. While BO

has historically been applied only to expensive-to-query objective functions,

we demonstrate here that large-scale Bayesian optimization is possible with

WISKI. Our BO experiments are conducted as follows: we choose 5 initial ob-
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servations using random sampling, then iteratively optimize a batched version

of upper confidence bound (UCB) (with q = 3) using BoTorch (Balandat et al.,

2020b) and compute an online update to each GP model, before re-fitting the

model. Accurate model fits are critical to high performance; therefore, we wish

to use as many inducing points for WISKI and O-SVGP as possible. For both

methods, we 1000 inducing points. We show the results over four trials plot-

ting mean and two standard deviations in Figure 2.6a for the Ackley bench-

marks. On both problems, WISKI is significantly faster than the exact GP

and O-SVGP, while achieving comparable performance on Levy. We show re-

sults over a wider range of test functions in Appendix A.3.2, along with the

best achieved point plotted against the number of steps and the average time

per step.

2.6.4 Active Learning

Finally, we apply WISKI to an active learning problem inspired by Balandat

et al. (2020b). We consider data describing the infection rate of Plasmodium

falciparum (a parasite known to cause malaria)∗ in 2017. We wish to choose

spatial locations to query malaria incidence in order to make the best possible

predictions on withheld samples. To selectively choose points, we minimize the

negative integrated posterior variance (NIPV, Seo et al., 2000), defined as

NIPV(x) := −
∫
X
E(V(f(x)|Dx)|D)dx.

∗Downloaded from the Malaria Global Atlas.
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Optimizing this acquisition function amounts to finding the batch of data

points x1:q, the fantasy points, which when added into the GP model will re-

duce the variance on the domain of the model the most. Here, we randomly

sample 10, 000 data points in Nigeria to serve as a test set that we wish to

reduce variance on and select q = 6 data points at a time from a held-out

training set (to act as a simulator) at a time; the inner expectation drops out

because the posterior variance only depends on the fantasy points and the

currently observed data, and not any fantasized responses. Stochastic varia-

tional models do not have a straightforward mechanism for fantasizing (i.e. re-

computing the posterior variance after updating a new data point conditional

on the fantasy points), so we instead query the test set predictive variance and

then choose the training points closest to the six test set points with maxi-

mum predictive variance.

As both mean and variances are available for the given locations, we model

the data with a fixed noise Gaussian process with scaled Matern 0.5 kernels,

beginning with an initial set of 10 data points, and iterating out for 500 itera-

tions for WISKI and O-SVGP and 250 iterations for an exact GP model (the

limit of data points that a single GPU could handle due to the large amount

of test points). We show the results of the experiment in Figure 2.6b across

three trials, finding that all of the models reduce the RMSE considerably from

the initial fits; however, O-SVGP and its random counterpart stagnate in

RMSE after about 250 trials, while both the exact GP and WISKI continue

improving throughout the entire experiment. Closer examination of the points
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queried by all of the three methods in Figure 2.6c, we find that the points

queried by O-SVGP tend to clump together, locally reducing variance, while

WISKI and the exact GP choose points throughout the entire support of the

test set, choosing points which better reduce global variance.
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Algorithm 2: Online Variational Conditioning (OVC)
Input: Data batch (Xbatch,y), SVGP with inducing points Z ′ and
ϕ(u′) = N (mu′ , Su′). 1. Compute c′, C ′ (Eq. 2.20).

2. Compute ŷ = K ′
u′u′C ′−1c′ and Σŷ = K ′−1

u′u′C ′K ′−1
u′u′ (Eq. 2.23).

3. Construct GP with D = ([Xbatch Z ′], [y ŷ]) and Σ = blkdiag(Σy,Σŷ).
4. Compute predictive mean and covariance caches, v and R as in Section
1.3.

5. Use caches to compute conditioned GP posterior on test points, Xtest.

2.7 OVC: Incrementally Conditioning Variational GPs in Constant Time

We now briefly describe the key ideas behind OVC with the goal of devis-

ing an efficient and stable method for updating the variational parameters

with respect to newly observed data. We begin by highlighting an alterna-

tive parameterization of SGPR that will prove useful. Then we describe the

OVC update to the variational distribution from two equivalent points of view,

namely the projection view and the pseudo-data view. The pseudo-data view

is summarized in Algorithm 2. Next we address a critical detail for good per-

formance, which is how the inducing point locations should be selected. We

then demonstrate how OVC can be applied to compute updated posterior dis-

tributions, e.g. p(f |D+x) in Eq. 1.6, and quantities of the posterior, during

gradient-based acquisition function optimization in BO, with reference to how

this can be performed practically in Section 2.8. Finally, we discuss how to

apply OVC to models with non-Gaussian likelihoods.
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2.7.1 Updating the Variational Posterior

We assume that we have trained a SVGP model (e.g. with the ELBO) on a

fixed set of data and have already trained the inducing point locations and

variational parameters, mu, Su. Instead of the traditional mu, Su parameteriza-

tion used by Titsias (2009a); Hensman et al. (2013b; 2015), we focus for now

on an alternative parameterization which was favored in early work on sparse

GP inference (Seeger et al., 2003; Opper & Archambeau, 2009). The param-

eterization is also similar to those used in both dual space functional varia-

tional inference (Khan & Lin, 2017) and expectation propagation (Bui et al.,

2017b). More recently, Panos et al. (2018) used a similar parameterization in

the context of large scale multi-label learning with SVGPs.

The SGPR predictive posterior q(b) relies on two terms dependent on the

training data,

c = KuaΣ
−1
y y, C = KuaΣ

−1
y Kau, (2.19)

where Σy is the covariance of the likelihood p(y|f). The optimal mu, Su are

then given by

mu = Kuu(Kuu + C)−1c, Su = Kuu(Kuu + C)−1Kuu, (2.20)

which can be substituted into Eq. (2.4) to obtain q(b). Our first observation

is that if Σy is block-diagonal, then c and C are additive across blocks of ob-
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servations. For some intuition, consider i.i.d. Gaussian noise (i.e. Σy = σ2In),

which implies

ci =
∑
j

σ−2yjkθ(zi,xj) = ϕ(zi)
⊤
∑
j

σ−2yjϕ(xj),

Cik =
∑
j

σ−2kθ(zi,xj)k(xj, zk) = ϕ(zi)
⊤
∑
j

σ−2ϕ(xj)ϕ(xj)
⊤ϕ(zk),

where ϕ is the (potentially infinite-dimensional) feature map associated with

kθ. Hence the entries of c and C are both inner products between projected

inducing points and weighted sums of features. For fixed inducing points, Z,

and hyper-parameters θ, we can use these updates to produce a streaming ver-

sion of SGPR by exploiting the additive structure of c and C. Furthermore,

this streaming version of SGPR is exactly Gaussian conditioning for SGPR as

we show in Appendix B.3.1. We can also allow the inducing points and hyper-

parameters to vary, which we address next.∗

The projection view: We assume we have

c′ = K ′
u′a′Σ−1

y′ y
′ and C ′ = K ′

u′a′Σ−1
y′ K

′
a′u′ ,

computed with inducing point locations Z ′ from data (X ′
batch,y

′) with kernel

hyperparameters θ′ (using shorthand kθ′ = K ′).† After obtaining the next pa-

rameters Z and θ (perhaps from gradient based optimization of the ELBO),
∗For full generality, we allow the hyper-parameters to vary; however, in our BO exper-

iments, we only consider varying the inducing points as that’s all we need to update when
computing acquisition functions.

†Cached computations that depend on (X ′
batch,y

′) are highlighted in blue.
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we observe new data (Xbatch,y) and would like to continue with inference. One

challenge is translating c′, C ′ (whose elements are inner products of the old

features) to the new feature space associated with θ. To resolve this challenge,

we construct a representative set of responses, ŷ = P⊤c′ and likelihood covari-

ance Σ̂ŷ = P⊤C ′P to project from the old feature space into the new feature

space by passing back through data space. The choice that minimizes recon-

struction error is the pseudo-inverse P = (K ′
a′u′K ′

u′a′)−1K ′
a′u′, but requires

storage of the full dataset, (X ′
batch,y

′). Instead we take P = K ′−1
u′u′, resulting in

the following modifications to Eq. (2.19):

c = KuvΣ
−1
y y +Kuu′K ′−1

u′u′c
′, (2.21)

C = KuvΣ
−1
y Kvu +Kuu′(K ′−1

u′u′C
′K ′−1

u′u′)Kuu′ , (2.22)

Note that K ′−1
u′u′c′ = Σ−1

y′ y′ and K ′−1
u′u′C ′K ′−1

u′u′ = Σ−1
y′ in the special case where

X ′
batch = Z ′. We also want to emphasize that although we have only considered

two batches of data for the sake of clarity, the approach applies to any number

of incoming batches.

The pseudo-data view: The above update is equivalent to having an

SGPR model with a Gaussian likelihood with covariance Σ = blkdiag(Σŷ,Σy)

on the data {cat(Z ′, Xbatch), cat(ŷ,y)}, where

ŷ = K ′
u′u′C ′−1c′, Σ−1

ŷ = K ′−1
u′u′C

′K ′−1
u′u′ . (2.23)

This interpretation is reminiscent of prior online variational approaches of
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Csató & Opper (2002) and Opper (1998). That is, in the context of condi-

tioning a SVGP, we can assume that we began with data {Z ′, ŷ} and are now

observing the new data {Xbatch,y}. See Appendix B.3.2 for a more details.

Extending to SVGPs: SGPR computes mu and Su as a function of c and

C in Eq. (2.20). However the equations can be reversed to solve for c and C

given mu and Su, allowing us to condition any variational sparse GP into an

SGPR model, without touching any previous observations due to the condi-

tional independence assumptions of variationally sparse GPs.∗ Note that if the

variational parameters are not at the optimal solution when the variational

distribution is projected back to the pseudo-data, the projection will be to the

targets and likelihood for which the current variational parameters would be

optimal, which may not correspond well to the data that originally created the

model. This potential pitfall is mitigated if the variational parameters are well

optimized and is offset by the practical advantages of SVGPs.

Connection to O-SGPR (Bui et al., 2017a): Formally, the updates de-

scribed in Eqs. (2.21) and (2.22) are equivalent to the O-SGPR approach of

Bui et al. (2017a), as we show in Appendix B.3.2. The original derivation of

O-SGPR is very technical, and does not highlight the similarities between the

batch and online SGPR variants. Both the projection and pseudo-data views

we have just described provide a much more intuitive way to reason about the

behavior of O-SGPR models. Our formulation also eliminates a matrix sub-

traction operation, which is beneficial for numerical stability.
∗Alternatively, we could construct SVGPs via direct optimization of c and C.
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2.7.2 Inducing Point Selection

Here, we describe inducing point selection during the conditioning procedure

to enable better variance reduction on new inputs. While heuristics includ-

ing re-sampling (Bui et al., 2017a) and data sufficient statistics (Hoang et al.,

2015b) have been proposed, they either require the number of inducing points

to grow or gradually forget old observations. We show in Appendix B.3.4 that

relying exclusively on gradient-based optimization of inducing locations works

very poorly in the online setting.
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Figure 2.7: Incremental learn-
ing RMSE on the UCI protein
dataset. Pivoted cholesky initial-
ization outperforms resampling.

To update the inducing point locations dur-

ing conditioning, we extend Burt et al. (2019)’s

batch inducing point initialization approach to

heteroskedastic Gaussian likelihoods. They con-

sider theoretical bounds on the marginal likeli-

hood, finding that for homoscedastic Gaussian

likelihoods a good strategy is to minimize ε, the

trace of the error of a rank-p Nyström approxi-

mation, i.e.

ε = trace
(
Σ−1/2

y (Kaa −KauK
−1
uuKua)Σ

−1/2
y

)
= σ−1trace(Kaa −Qaa)

for Qaa = KauK
−1
uuKua. They follow a classical approach of Fine & Scheinberg

(2001) by a greedy minimiziation strategy: choosing as inducing points the
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pivots of a rank p pivoted Cholesky factorization of Kaa.

We denote the function values over the batch+pseudo dataset as

â = [f(x1), . . . , f(xb), f(z
′
1), . . . , f(z

′
p)]

⊤.

In our case the covariance of the pseudo-likelihood is no longer homoscedastic,

so the slack term becomes ε = trace(Σ−1/2(Kv̂v̂ − Qv̂v̂)Σ
−1/2) and hence the

pivoted Cholesky decomposition is instead performed over Σ−1/2Kv̂v̂Σ
−1/2 to

select the top p pivots of the p + nnew matrix. When compared to re-sampling

the inducing points (Bui et al., 2017a), pivoted cholesky updates perform sig-

nificantly better, as shown in Figure 2.7 on the UCI protein dataset (Dua &

Graff, 2017). Experimental details are given in Appendix B.4.2.

Application to Bayesian Optimization: In the context of BO, we con-

dition on hypothetical observations, and the conditioned surrogates are dis-

carded after each acquisition function evaluation. Since the SVGP will not be

conditioned on more than a few batches of observations, we can sidestep the

issue of updating inducing locations entirely by instead conditioning into an

exact GP trained the combined pseudo-data through the pseudo-likelihood.

That is, we model the data as (y, ŷ) ∼ N (f,Σ) (Gaussian with block-diagonal

covariance) assuming f ∼ GP(µθ, kθ(·, ·)). We reach the same model by choos-

ing X̂ as the inducing points in our conditioned SGPR (Section 2.7.1). For

small nt, an exact GP is not much slower, taking only (nt + p)3 computations

instead of p3 computations, further reduced by using low rank updates.

52



2.7.3 Local Laplace Approximations for Non-Gaussian Observations

Thus far, we have solely considered Gaussian observations. The introduction

of a non-Gaussian likelihood presents a new challenge, since it implies that the

current observation batch and the pseudo-data are no longer jointly Gaussian.

To adapt the conditioning procedure to the non-Gaussian setting, we can sim-

ply perform a Laplace approximation of the likelihood at the new points (Ras-

mussen & Williams, 2008, Ch. 3). Specifically, this gives us an approximate

likelihood, p̂(y|f) = N (ỹ; f,H−1
∗ ), where H∗ = ∇2

f log p(y|f)|f∗(y) and f ∗(y) is

the maximizer of log p(y|f) + f⊤K−1f , computed via Newton iteration.∗ When

conditioning on new observations y, we substitute f ∗(y) instead. That is, our

new model has responses (f ∗(y), ŷ) instead of (y, ŷ), and the pseudo-likelihood

remains Gaussian with covariance Σ = blkdiag(H−1
∗ ,Σŷ). We primarily con-

sider natural parameterizations of one-dimensional exponential families, so

that H∗ is positive, diagonal and depends solely on f . Computing ∇ log p(y|f)

and H∗ is possible by hand but one can also use automatic differentiation

(AD, Pearlmutter, 1994).† In Appendix B.4, Figure B.3 we show the effect

of repeated Laplace approximations across several batches for online classifica-

tion.
∗One could consider using the posterior covariance instead of K. Our experiments with

the posterior covariance produced more extreme values of f and thus less regularization.
†Specifically, we use PyTorch’s functional API, https://pytorch.org/docs/stable/

autograd.html#functional-higher-level-api.
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Figure 2.8: (a) Hartmann6 test problem with one constraint. Here, SVGPs with noisy ex-
pected improvement (qNEI) and KG match the performance of exact GPs with qNEI and
qKG. (b) Free electron laser problem from McIntire et al. (2016); SVGPs with knowledge
gradient outperforming weighted sparse GPs. (c) Constrained Hartmann6 test problem with
count responses (Poisson likelihood). Only SVGPs can be used here, and qKG outperforms
qNEI. (d) Preference learning; SVGPs with qKG are similar to Laplace approximations with
NEI, and outperform qNEI with SVGPs.

2.8 OVC: Empirical Results

Our experimental evaluation demonstrates that SVGPs using OVC can be

successfully used as surrogate models with advanced acquisition functions in

Bayesian optimization, even in the large batch and non-Gaussian settings. In

keeping with the BO literature, we will refer to the query batch size as q (not

to be confused with the variational posterior q(f) in previous sections). All

SVGP models that use conditioning (or fantasization) require OVC to even be

practical to implement.

Using OVC as a Building Block inside of BO

In all of our experiments, we use OVC as a building block to enable fanta-

sization (Algorithm 2) within a standard BO acquisition function that re-

quires fantasiziation. These acquisitions are generally “look-ahead” as a result;
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specifically, qKG (Balandat et al., 2020a; Jiang et al., 2020a), LTSs, our ver-

sion of qGIBBON which uses a fantasy batch (Moss et al., 2021), and qMul-

tiStepLookAhead (Jiang et al., 2020a) all use the fantasization model. Af-

ter adding in OVC as the condition_on_observations function within a

BoTorch model class (Balandat et al., 2020a), we can simply optimize qKG

or qGIBBON with an SVGP exactly as an exact GP surrogate, by using gra-

dient based optimizers such as L-BFGS-B. In general, we need to differentiate

through the fantasy model with respect to the inputs and then use gradient

based methods to find the optimum. Please see Balandat et al. (2020a) and

Frazier (2018) for description of how a BO loop is constructed and how acqui-

sition functions are optimized.

Experimental Setup In general, a Bayesian optimization loop consists of

the steps of training the model and then using the trained model to optimize

an acquisition function to acquire new data points, which are then added into

the training data for the next model. All experiments use PyTorch (Paszke

et al., 2019a), GPyTorch (Gardner et al., 2018b), and BoTorch (Balandat

et al., 2020a). Unless otherwise specified, we run each experiment 50 times

and report the mean and two standard deviations of the mean.

In the first step, we first train the inducing points, variational distribution,

and kernel hyper-parameters using the evidence lower bound given in Eq. B.3.

As all components are differentiable, we use the Adam optimizer with a learn-

ing rate of 0.1 and optimize for 1000 steps or until the loss converges, whichever

is shorter. To initialize the inducing points, we compute a pivoted cholesky

55



factorization on the initial kernel on the training data (described in Section

2.7.2 following Burt et al. (2019)). The kernel hyper-parameters are initialized

to GPyTorch defaults (which sets all lengthscales to one), while the variational

distribution is initialized to mu = 0, Su = I (again, GPyTorch defaults). Fur-

ther experimental details and dataset descriptions are in the Appendix.

2.8.1 Knowledge Gradient with SVGPs

These experiments use the one-shot formulation of the batch knowledge gra-

dient (qKG) (Eq. 1.6) from Balandat et al. (2020a), who demonstrated that

qKG outperforms other acquisitions due to being able to plan two steps into

the future. Using and optimizing qKG has only been available for exact GPs

previously. By using OVC, we have enabled SVGPs to also efficiently and

tractably optimize qKG, even for non-Gaussian observations. We compare to

batch noisy expected improvement (qNEI, Letham et al., 2019) which is my-

opic and does not use fantasization (e.g. conditioning). Here, for the SVGPs

we used min(N, 25) inducing points.

Gaussian observations: We use the Hartmann6 test function, with one

black box constraint, maximizing f(x) = −
∑4

i=1 αi exp{−
∑6

j=1Aij(xj − Pij)
2}

subject to the constraint that c(x) = ||x||1 ≤ 3 for fixed A,P, α. We use 10

initial points and a batch size of 3 optimizing for 50 iterations, comparing to

SVGPs and exact GPs using qNEI. We show the results in Figure 2.8a where

SVGPs with qKG match exact GPs with both qNEI and qKG, and outper-

form SVGPs using qNEI.
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Second, we mimic the laser tuning experiment of (McIntire et al., 2016;

Duris et al., 2020), demonstrating that SVGPs outperform even weighted on-

line GPs (WOGP), which were designed for this task. Here, we use 100 initial

points, with d = 14, and and wish to tune a laser’s output energy as a function

of the magnet settings that produce the beam. Like McIntire et al. (2016) we

treat a pretrained GP fit on experimental data as a simulator. We use a batch

size of 1, finding that SVGPs + KG outperform WOGP (Figure 2.8b). How-

ever, exact GPs outperform the variational approaches (Appendix Fig. B.4b).

Non-Gaussian likelihoods: Next, we extend the knowledge gradient to

problems with non-Gaussian likelihoods. First, we take the constrained Hart-

mann6 test function from the previous section, and use Poisson responses,

y ∼ Poisson(exp{f(x)}), repeating the same settings as for the Gaussian case.

Now, the data is non-Gaussian and cannot be well-modelled by a Gaussian

likelihood, so we compare to only SVGPs with qNEI. qNEI is outperformed by

qKG, as shown in Figure 2.8c.

Second, in Figure 2.8d, we consider a preference learning problem in-

spired by Lin et al. (2020). Here, the latent data is described by

f(x) = −10−1/2

10∑
i=1

√
i cos(2πxi) for x ∈ [0, 1]10,

comparing to Laplace approximations (Chu & Ghahramani, 2005). Again, we

see that SVGPs with qKG outperform qNEI with both SVGPs and Laplace

approximations.
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Figure 2.9: (a) Active learning of malaria incidence from satellite data. Using qNIPV out-
performs randomly selecting points, while the SVGPs slightly outperform both exact GPs
and WISKI. (b,c) Active learning of schistomiasis incidence in Cote d’Ivoire from Andrade-
Pacheco et al. (2020). Comparison is to the random forest based approach using active sam-
pling. While the GP based models are somewhat less accurate at predicting hotspots (b),
they are better as a global model of prevalence (c).

2.8.2 Active Learning of Disease Incidence

We next present results for two active learning tasks governing the collection

of disease incidence data. In both tasks the acquisition functions again require

efficient conditioning on hypothetical data, and the second task has Binomial

responses, so exact GPs cannot be applied. In both settings, applying OVC

to SVGPs gives strong results competitive with either exact GPs or random

forests.

Modelling of Malaria Incidence: We consider data from the Malaria

Global Atlas (Weiss et al., 2019) describing the infection rate of a parasite

known to cause malaria in 2017. We wish to choose spatial locations to query

malaria incidence in order to make the best possible predictions on a with-

held test set, the entire country of Nigeria. Following Stanton et al. (2021), we

minimize the negative integrated posterior variance (NIPV, Seo et al., 2000),
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defined as

a(x;D) := −
∫
X
E(V(f(x)|D+x)|D)dx,

again with D+x = D ∪ {(x, y)}. Intuitively, the minimizer of this acquisition

will be the batch of data points that when added into the model will most

reduce the total posterior uncertainty across the domain, requiring efficient

conditioning to do so in a tractable manner. The results are shown for a batch

size of q = 6 across 15 trials in Figure 2.9a where we see that each method

outperforms random baselines. Perhaps due to the optimization freedom, the

SVGP outperforms both the exact GP and WISKI (Stanton et al., 2021).

Hotspot Modelling: We follow Andrade-Pacheco et al. (2020) and model

the prevalence of schistomiatosis in Côte d’Ivoire using simulated responses

from 1500 villages in that country, and taking into account six other demo-

graphic variables. We model the responses y (incidence) at locations x with

population n(x) with a Binomial likelihood p(y|f,x) ∼ Binomial(n(x), r(f)),

where r(f) = (1 + exp{−f})−1. Letting τ ∈ (0, 1) be a threshold on the

prevalence for a location to be considered a “hotspot” (Andrade-Pacheco et al.,

2020), we compute the entropy:

hτ (x,D) := Ep(f |D)(H(Bernoulli(f > logit(τ)))),

≈ 1

K

K∑
i=1

1f>logit(τ)H(Bernoulli(f)),

taking the acquisition value to be the reduction in the entropy of the posterior
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predictive distribution over the incidence under the hotspot-focused likelihood.

aτ (x,D) :=
∫
x′∈X

(
hτ (x

′,D+x)− hτ (x
′,D)

)
dx′. (2.24)

A location is given a high acquisition value if observing the incidence at that

location reduces the uncertainty of the model on the predicted set of hotspots.

In Figure 2.9c, we compare to Andrade-Pacheco et al. (2020) who use spatial

kriging on the residuals of a random forest model. Both their random baseline

and their exploration based procedure (a variant of UCB) start off with higher

prediction accuracy; however our SVGP models ultimately outperform the

kriging approach with random selection. The SVGP is a better predictor of

true prevalence, as shown in Figure 2.9b. In both cases, our acquisition func-

tion significantly outperforms random selection with a SVGP surrogate.

2.8.3 Rollouts within Thompson Sampling for High Dimensional BO

For our final set of experiments, we solve control problems using trust region

Bayesian optimization (TurBO, Eriksson et al., 2019). Inspired by multi-step

look-aheads (Jiang et al., 2020a; Bertsekas, 2020), we propose h-step look-

ahead Thompson sampling (LTS-h). In BO, Thompson sampling (TS) is often

implemented by drawing samples from the posterior at points all over the do-

main, then selecting the q best to form a query batch (Thompson, 1933; Eriks-

son et al., 2019). LTS-h extends the idea by conditioning the surrogate inde-

pendently on each posterior sample in the original TS query batch, Thomp-

son sampling again from the updated posterior with a new set of points, and
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Figure 2.10: Multi-step rollouts with OVC and SVGPs provides sample-complexity and
wall-clock time improvements on high dimensional BO problems when using TurBO and LAM-
CTS (Eriksson et al., 2019; Wang et al., 2020). SVGP rollouts are as time efficient (to 150
iterations) as standard TS (a) on lunar rover, d = 60. (c-d) MuJoCo environments using
LAMCTS + TurBO. Also shown is the reward threshold (dashed grey lines) and augmented
random search (ARS)’s performance (dotted red lines) (Mania et al., 2018). The median and
its 95% confidence interval are shown over 24 trials for rover and 10 trials for swimmer and
hopper.

appending the best sample to its predecessor to form a path. The process

is repeated h times. Finally, we condition the original surrogate jointly on

each path, then perform TS again to choose the new query batch. Informally,

each path corresponds to a distinct, coherent draw from p(f |D), allowing the

inner-loop to refine its guess of the global optimum for different f , and the

final round of TS chooses the query batch based on those guesses. See Ap-

pendix B.3.5 for a formal description. Like other look-ahead acquisitions, LTS-

h is only practical if posterior conditioning and samples are very efficient and

numerically stable. LTS-h is conceptually similar to path sampling for look-

ahead in Jiang et al. (2020a) and kriging believer (Ginsbourger et al., 2010).

For validation, we consider tuning the 60 dimensional path that a lunar

rover takes across a field stacked with obstacles (Wang et al., 2018; Eriksson
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et al., 2019). We use batches of q = 100 with 200 initial points, and use trust

region Bayesian optimization (TurBO) to split up the space effectively (Eriks-

son et al., 2019), comparing to TurBO with Thompson sampling (TS) as the

acquisition (Thompson, 1933). We show the wall clock times per iteration in

Figure 2.10a, where we see that the TurBO + LTS approaches compare well

in wallclock time to TurBO+TS, while being more function efficient (Figure

2.10b).

Finally, we consider MuJoCo problems using the OpenAI gym (Todorov

et al., 2012; Brockman et al., 2016) with LTSs inside of TurBO with trust re-

gions generated by Monte Carlo Tree Search following the procedure of Wang

et al. (2020). Following Wang et al. (2020), we learn a linear policy and con-

sider the swimmer-v2, hopper-v2 environments over 10 trials displaying the

median and its 95% confidence band due to high variance. On both problems,

SVGP with LTSs tend to be the most sample efficient, with SVGP + TS per-

forming at least as well on swimmer-v2. We also show the reward threshold

and the performance achieved by augmented random search (ARS), which is

a strong baseline reinforcement learning method that uses random search to

tune linear controllers (Mania et al., 2018). Our results suggest that LTSs are

promising overall; however, more work needs to be done for high dimensional

kernels on these problems.
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2.9 Discussion

We have shown how to achieve constant-time online updates with Gaussian

processes while retaining exact inference. Our approach, WISKI, achieves com-

parable performance to Gaussian processes with exact kernels, and comparable

speed to state-of-the-art streaming Gaussian processes based on variational

inference. Despite the present day need for scalable online probabilistic infer-

ence, recent research into online Gaussian processes has been relatively scarce.

We hope that our work is a step towards making streaming Bayesian inference

more widely applicable in cases when both speed and accuracy are crucial for

online decision making.
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... the main use I would make of [probability

theory] ... is normative, to police my own

decisions for consistency and ... to make compli-

cated decisions depend on simpler ones.

Leonard J. Savage

3
Bayesian Optimization for Biological

Sequence Design
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3.1 Motivation

Modern drug development is a very costly endeavor, with estimates ranging

from $310M to $2.8B for each new drug (Wouters et al., 2020). There are

three major phases of drug development: 1) target discovery, the proposal of

a biological mechanism hypothesized to treat a specific medical condition, 2)

drug design, the specification of a molecular payload which will interact with

the proposed mechanism, and 3) clinical trials, the evaluation of the efficacy

and safety of the payload in vivo. Though each phase contributes to the total

cost of development, in this work we focus on the drug design phase. In partic-

ular we will optimize real-valued target properties (such as neurotransmitter

receptor affinity or protein folding stability) for payloads represented as dis-

crete sequences (e.g. SMILES strings). Since the mappings from sequence to

target are often unknown, expensive to observe in vitro, and difficult to sim-

ulate, we pose biological sequence design as a costly black-box optimization

(BBO) problem over a large discrete search space.

3.2 Overview

Recent work applying deep learning to biological tasks has primarily focused

on learning from a static, offline dataset (Rao et al., 2019; Jumper et al., 2021;

Baek et al., 2021; Meier et al., 2021; Rives et al., 2021). When these mod-

els are used to select new sequences to label, they are applied in a one-shot

fashion, without accounting for future design rounds (Gligorĳevic et al., 2021;
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Figure 3.1: BayesOpt can be used to maximize the simulated folding stability (i.e. -dG, or
the negative change in Gibbs free energy) and solvent-accessible surface area (SASA) of red-
spectrum fluorescent proteins (RFPs). Higher is better for both objectives. The ancestor pro-
teins are shown as colored circles, with corresponding optimized offspring shown as crosses.
Stability correlates with protein function (e.g. how long the protein can fluoresce) while SASA
is a proxy for fluorescent intensity.

Biswas et al., 2021). Because labels are scarce for many important targets, it

is important to account for model uncertainty to manage the explore-exploit

tradeoff (O’Donoghue et al., 2018).

Bayesian optimization (BayesOpt) is a powerful class of BBO algorithms,

explicitly designed to coherently reason about online decision-making based on

incomplete information (Brochu et al., 2010). BayesOpt balances the explore-

exploit tradeoff in a principled way, relying on a probabilistic discriminative

model to prioritize decisions with the highest potential payoff. At each deci-

sion point the discriminative model produces a posterior distribution over the

hypothesis space of all functions the model can represent. The posterior for-

mally represents the degree to which any particular hypothesis is plausible

66



given the data and model assumptions. To make a decision, BayesOpt selects

the best decision as defined by an acquisition function, such as expected im-

provement (EI), with each hypothesis contributing to the acquisition value in

proportion to its posterior probability (Jones et al., 1998). BayesOpt is not

only philosophically appealing, it is provably a no-regret strategy under the

right conditions (Srinivas et al., 2010).

Like many Bayesian methods, the barriers hindering widespread adoption

of BayesOpt are not conceptual, but practical. Drug design in particular is a

natural application domain, but introduces multiple challenges. Discrete, high-

dimensional inputs: antibody therapeutic payloads are often RNA proteins

which instruct the patient’s immune system to produce the desired antibody.

When proteins are represented as a sequence of residues, each identifying one

of 20 possible amino acids, even a fairly small 200-residue protein is only one

of 20200 ≈ 1.6×10260 options. ∗ By contrast, conventional BayesOpt works best

on problems with 10 or fewer continuous decision variables, due to the proper-

ties of standard kernels, and the lack of gradients to maximize the acquisition

function. Batched, multi-objective experiments: because considerations includ-

ing efficacy, toxicity, and yield must all be taken into account, drug design is

inherently multi-objective. Furthermore sequences are labeled in batches, ne-

cessitating the use of more sophisticated acquisition functions than standard

workhorses like EI. Data-scarcity: wet lab experimental data is expensive and
∗For a sense of scale, with an estimated 1080 atoms in our observable universe, enumerat-

ing 10260 would be like counting atoms if every atom in our universe was itself a universe, and
all the atoms in those universes were also universes.
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Figure 3.2: LaMBO with a non-autoregressive denoising autoencoder (DAE) architecture: a
shared encoder produces continuous token-level embeddings Z from corrupted inputs, which
are passed to a discriminative encoder to produce target-specific token-level embeddings Z ′.
A generative decoder head receives both Z and Z ′ as input, and a discriminative Gaussian
process (GP) head pools Z ′ to predict the objective values. The GP head allows the use of
principled acquisition functions to manage the explore-exploit tradeoff, and the DAE head
allows LaMBO to follow the acquisition gradient in latent space when selecting new queries.

challenging to collect, so it is rare to have large-scale datasets with labels for

the exact target properties of interest.

No single BayesOpt method has been shown to simultaneously address all of

these challenges (see Section 3.3). As a result, previous methods have necessar-

ily only been evaluated on very stylized tasks that fail to capture key aspects

of real drug design problems. In this work we present Latent Multi-Objective

BayesOpt (LaMBO) to address this deficiency, and propose a novel in sil-

ico task which emulates protein design tasks more closely than common open-

source drug design benchmarks. We preview our results applying LaMBO to
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this new task in Figure 3.1, maximizing the stability and SASA of RFPs de-

rived from the fpBase dataset (Lambert, 2019), with the initial Pareto frontier

in objective space shown as a dashed line. The new Pareto frontier (the solid

line) discovered by LaMBO is superior, as it is characterized more densely by

new sequences that are Pareto improvements over their ancestors. In short,

our contributions, originally published in Stanton et al. (2022), are as follows:

1. We propose the LaMBO architecture, a novel combination of a genera-

tive DAE with a discriminative deep kernel learning GP, with a simple

joint training procedure and an effective decision optimization routine.

2. We propose a new in silico large-molecule task to augment existing open-

source drug design benchmarks.

3. We evaluate LaMBO in silico on two small-molecule tasks and our new

large-molecule task, comparing to both genetic and latent-space BBO

baselines, showing improved sample efficiency and solution quality.∗

4. We present in vitro wet lab results using LaMBO to discover brighter,

more thermostable red fluorescent proteins.

3.3 Related Work

Discrete Optimization by Sampling: genetic algorithms (GAs) such as

NSGA-II (Deb et al., 2002) slowly evolve a good solution by random muta-

tion. GAs are a simple, popular baseline for BBO problems, but are known
∗Code here: github.com/samuelstanton/lambo.
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for being inefficient (Turner et al., 2021). One solution is to continue gener-

ating mutations randomly, but screen the proposed queries with a discrimi-

native model before labeling (Nigam et al., 2019; Yang et al., 2019b). Other

solutions focus on proposing mutations more intelligently, including RL-based

approaches (Angermueller et al., 2020a;b) and generative approaches (Jensen,

2019; Biswas et al., 2021; Zhang et al., 2021). In particular the generative ap-

proach described by Lee et al. (2018) and Gligorĳevic et al. (2021) inspired

the LaMBO architecture. All the approaches just discussed are greedy in the

sense that they rely on point estimates of the objective values to select new

queries.

Discrete BayesOpt: excluding library-based approaches such as Yang

et al. (2019a), discrete BayesOpt methods can be categorized by how they

structure the inner loop optimization problem. Some methods use substring

kernels (SSKs), optimizing queries directly in sequence space with a GA, and

evaluating only on small tasks (Lodhi et al., 2002; Beck & Cohn, 2017; Moss

et al., 2020). Khan et al. (2022) is an example of concurrent antibody de-

sign work in this vein, exploiting task-specific knowledge of complementarity-

determining regions (CDRs) of the antibodies to make the problem tractable.

See Appendix C.3.1 for more discussion and an experiment comparing SSK

and DKL GPs in the offline regression setting.

Latent-space optimizers learn continuous sequence embeddings Z, which

are shared by a generative decoder modeling p(x|Z) and the discriminative

surrogate modeling p(y|Z) (Deshwal & Doppa, 2021; Grosnit et al., 2021;
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Maus et al., 2022). Thus Z can be optimized with gradient-based methods

to produce new sequences. LaMBO is most similar to Latent-Space BayesOpt

(LSBO) (Gómez-Bombarelli et al., 2018), since both methods model p(y|Z) as

a GP and model p(x|Z) via an autoencoder. LSBO uses a VAE pretrained on

a large dataset to solve single-objective tasks, training the VAE weights and

the auxiliary GP head separately. With a specialized architecture proposed by

Jin et al. (2018) and a biased VAE objective proposed by Tripp et al. (2020),

LSBO has been shown capable of solving simple small-molecule tasks such as

maximizing penalized logP. Aside from LaMBO’s use of DAEs rather than

VAEs, this work improves upon LSBO in multiple ways, such as enabling the

use of a general-purpose architecture for both small and large molecules, re-

moving the need to pretrain the autoencoder, providing a reliable procedure

for jointly training generative and GP heads with a shared encoder, and the

introduction of multi-objective tasks and acquisition functions. See Appendix

C.3.2 for a comparison between LSBO and LaMBO in the single-objective

BBO setting.

Multi-Objective BayesOpt: Daulton et al. (2020a) proposed a batch ver-

sion of expected hypervolume improvement (EHVI) (Emmerich, 2005; Em-

merich et al., 2011), an extension of EI to multiple objectives. In follow-up

work, Daulton et al. (2021a) proposed the noisy expected hypervolume im-

provement (NEHVI) acquisition function, which extends noisy expected im-

provement (NEI) (Letham et al., 2019) to multiple objectives. Multi-task GPs

(MTGPs) have previously been used as surrogates for multi-objective BayesOpt
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(Shah & Ghahramani, 2016), including recent work scaling MTGPs up to

thousands of training examples or objectives in the continuous setting (Daulton

et al., 2021b; Maddox et al., 2021a). We make use of NEHVI and MTGPs, in-

cluding an efficient MTGP posterior sampling approach developed in Maddox

et al. (2021b).

3.4 LaMBO: Latent-Space Multi-Objective BayesOpt

3.4.1 Discrete Multi-Objective Sequence Design

We first define the input space,

X =
t∏

i=1

V ,

where V is an ordered, discrete vocabulary of v tokens, t is the max sequence

length, and ∏ is the Cartesian product. V includes a padding token to accom-

modate sequences of varying length. Because |X | = |V|t is exponential in t, X

becomes too large to enumerate quickly as the sequence length grows, even if

|V| is relatively small. As a result, sequence optimization usually starts with

a library or pool of initial sequences (see Figure 3.2, top), which are modified

to produce new candidate sequences. When posed in this way, the optimiza-

tion problem is restructured into three nested decisions: (1) Choose a base

sequence from the pool. (2) Choose which positions on the sequence to change.

(3) Choose how the sequence will be changed at those positions.

We represent sequence design as a multi-objective optimization problem
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maxx∈X (f1(x), . . . , fm(x)), where m is the number of objectives and each fi :

X → R is an expensive, black-box function of decision variables x ∈ X . Given

two feasible solutions x and x′, x dominates x′ (x ≺ x′) if fi(x) ≤ fi(x
′) ∀i ∈

{1, . . . ,m}, and ∃i ∈ {1, . . . ,m} s.t. fi(x) < fi(x
′). In general, there will not be

a single dominating solution x∗; instead, we define the set of non-dominated

solutions (i.e. the true Pareto frontier P∗),

P∗ := {x ∈ X | {x′ ∈ X | x′ ≺ x,x′ ̸= x} = ∅}. (3.1)

Since P∗ is unknown, we seek a set of candidate solutions P that are close in

objective space to those in P∗. We find these solutions by maximizing the hy-

pervolume bounded by the extremal points in P ∪ {xref}, where xref is some

reference solution. We now describe the key ideas behind LaMBO, summa-

rized in Figure 3.2 and Algorithm 3.

3.4.2 Architecture Overview

We use a non-autoregressive denoising autoencoder to map discrete sequences

to and from sequences of continuous token-level embeddings, with a multi-

task GP head operating on pooled sequence-level embeddings. Unlike pre-

vious work combining GPs with deep generative models, we do not require

a pretrained autoencoder, nor do we require the surrogate to be completely

reinitialized after receiving new data. Furthermore, we demonstrate that both

stochastic variational and exact GP inference can be used, alleviating concerns

regarding computational scalability or applicability to noisy objectives with
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non-Gaussian likelihoods. See Appendix C.2 for more details.

Shared Encoder: we use a non-autoregressive bidirectional encoder g(x, θenc) =

[z1, . . . , zt] = Z, where zi ∈ Rd are latent token-level embeddings. In particu-

lar, our encoder is composed of 1D CNN layers, using standard vocabulary

embeddings and sinusoidal position embeddings, padding token masking, skip-

connections, and layernorm. A key advantage of using a DAE rather than a

VAE is that projects like ChemBERTa, TAPE and ESM have already openly

released large DAE models trained on large sequence corpora (Chithrananda

et al., 2020; Rao et al., 2019; Rives et al., 2021). As a result, encoders from

these models could be used as drop-in replacements for our small CNN en-

coder.

Discriminative Head: this head takes an encoded sequence Z and out-

puts a scalar value indicating the utility of selecting that sequence as a query

point. We pass Z to a discriminative encoder w to obtain transformed em-

beddings Z ′, then pool Z ′ into low-dimensional sequence-level features. The

discriminative encoder is smaller than the shared encoder, for example a sin-

gle residual CNN block. The pooling operation (|I(x)|)−1
∑

i∈I(x) z
′
i averages

token-level embeddings over a restricted index set I(x) which excludes posi-

tions corresponding to padding tokens. We define a multi-task GP kernel by

combining a 5/2 Matérn kernel evaluated on these sequence features with an

intrinsic model of coregionalization (ICM) kernel over fi (Goovaerts et al.,

1997; Alvarez et al., 2011; Rasmussen & Williams, 2008). The resulting GP

outputs a posterior predictive distribution p(f |D), which is passed as input to
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the acquisition function. We use the noisy expected hypervolume improvement

(NEHVI) acquisition from Daulton et al. (2021a) since some objectives (partic-

ularly those involving biological data) are inherently noisy.

Generative Decoder Head: this head (h) maps a sequence of token-level

embeddings to a predictive distribution over X and can either be a simple

masked language model (MLM) head (Devlin et al., 2018) or a full seq2seq

latent non-autoregressive neural machine translation (LANMT) decoder (Shu

et al., 2020). In this work we make use of both. An MLM head is simpler and

easier to control than an LANMT decoder, which allows for careful compar-

isons between LaMBO and discrete genetic optimizers. Despite their complex-

ity, LANMT decoders accommodate insertions and deletions more gracefully

than MLM heads by means of a length prediction head and length transform

operation, allowing the same latent representation to be decoded to sequences

of varying length. In either case, the decoder uses the same layer types as the

shared encoder g, and takes both Z and Z ′ as input.

3.4.3 Initializing the Latent Embeddings

At each outer-loop iteration i, there are many choices of x we are confident

will not improve our current solution Pi, corresponding to large flat regions

of the inner-loop loss surface. If the inner-loop is not initialized carefully, it

is very likely the initial solution will fall in one of these flat regions, severely

hampering gradient-based optimization. If x was continuous, we could use ini-

tialization heuristics from previous work to avoid this pitfall (Balandat et al.,
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(c) DRD3 + SA
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Figure 3.3: On all four tasks (described in Section 3.5.1), LaMBO outperforms genetic al-
gorithm baselines, specifically NSGA-2 and a model-based genetic optimizer with the same
surrogate architecture (GA + MTGP + NEHVI). Performance is quantified by the hyper-
volume bounded by the optimized Pareto frontier. The midpoint, lower, and upper bounds
of each curve depict the 50%, 20%, and 80% quantiles, estimated from 10 trials. See Section
3.5.2 for more discussion.

2020a; Daulton et al., 2021a). Instead we now show how the the same corrup-

tion process used to train and sample from DAEs can be used as a robust ini-

tialization procedure for discrete x by initializing the inner loop solution in

latent-space (Z0) with corrupted, encoded variants of the current outer-loop

solution Pi.

Selecting base sequences: we begin with a set of seed sequences Xpool

and select a subset, Xbase ⊂ Xpool. After each optimization round, the latest

query sequences are added to Xpool and can serve as future base sequences.

Choosing Xbase well is critical for fast convergence. If too many low quality

sequences are added, too much computation is spent optimizing them. Con-

versely, only selecting the current Pareto sequences could hinder exploration

of sequences with potential for improvement. The interaction between the on-

line queries and the decoder head must also be considered, since we want to

prevent the generative samples from collapsing to a couple sequences.
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We populate Xbase first with the current Pareto sequences Pi, then with ran-

dom sequences (without replacement) that were on the Pareto frontier in pre-

vious optimization rounds (P<i), and finally fill any remaining space in the

base set with random sequences from the entire optimization history. In prac-

tice, we took the size of the base set to be the same as the query batch size b.

We perform multiple restarts during the inner loop, and each restart samples b

sequences from Xbase, with replacement. We do not sample any base sequences

uniformly at random, but according to a weighted distribution ∆(Xpool) to

ensure that high-scoring sequences are more likely to be optimized than low-

scoring ones.

Let ri(xj, X) be the rank of xj ∈ X w.r.t. the 0-indexed dense ranking of X

according to fi, and let rmax(xj, X) = maxi ri(xj, X). The sampling weight wj

of xj ∈ Xpool is

wj = sj(− log(1 + r)/τ), (3.2)

r = [rmax(x1, X), . . . , rmax(xp, X)],

where sj(v) = exp(vj)/
∑

i exp(vi) is the softmax function and τ ∈ (0,+∞)

is the softmax temperature. In other words, we choose the least favorable

ranking across all objectives for each x to determine its weight. This type of

weighting is similar in spirit to a procedure used by Tripp et al. (2020) to bias

a VAE loss in favor of high-scoring sequences.

Selecting base sequence positions: after obtaining Xbase we apply a
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Algorithm 3: The LaMBO inner loop. For clarity, steps where LaMBO
differs from LSBO are shown in blue.
Inputs: acquisition a, corruption c, shared encoder g, discriminative
encoder w, decoder h, base sequences Xbase, and batch size b.
v∗ ← +∞
Z0 = {g ◦ c(x0), . . . , g ◦ c(xb)}, xm ∈ Xbase

for j = 0, . . . , jmax do
Z ′

j = w(Zj)

Zj+1 = Zj − η∇Z

[
a(Z ′

j)−λH
[
h(Zj, Z

′
j)
]]

Xcand ← {x′
1, . . . ,x

′
b} ∼ h(Zj, Z

′
j)

Zcand ← [g(x′
1), . . . , g(x

′
b)]

⊤

vj = a(w(Zcand))
if vj < v∗ then

v∗,X ∗ ← vj, Xcand

end
end
return X∗

corruption function c to each element before passing them as input to the

encoder, similar to the procedure proposed in Gligorĳevic et al. (2021). The

corruption function first selects positions in each sequence to modify, then se-

lects a modification (substitution, insertion, deletion) at those positions. We

uniformly sample positions not occupied by utility tokens, such as padding to-

kens.

Selecting corruption operations: once sequence positions have been se-

lected, the corruption function chooses corruption operations to apply at those

positions. For LaMBO, the corruption procedure differs depending on whether

the decoder is an MLM head or a LANMT head. If the decoder is an MLM

head then all operations are substitution operations, and the replacement to-

kens are all masking tokens. If the decoder is an LANMT head then the oper-

78



ation type is chosen randomly and replacement tokens are sampled uniformly

from V. Note we use a similar corruption procedure to train the decoder head.

3.4.4 Sequence Optimization

At a high level, we solve the inner-loop by treating the output of the decoder

head h as a proposal distribution. We iteratively refine the proposal distribu-

tion by following a regularized acquisition gradient in latent space, drawing

and scoring batches of sequences along the way (Algorithm 3).

More precisely, once we have selected and corrupted the base sequences, we

pass them through the encoder to produce latent embeddings Z0 that serve

as the initial solution for the inner-loop optimization problem. Then for each

optimization step 0 ≤ j < jmax, we take Zj+1 = Zj − η∇Z [ℓquery(Zj)], where

Z ′
j = w(Zj) (i.e. the output of the discriminative encoder w),

ℓquery(Zj) = a(Z ′
j) + λH[h(Zj, Z

′
j)], (3.3)

H is the Shannon entropy, and η, λ are hyperparameters controlling the step-

size and regularization strength. We sample Xbatch = {x′
0, . . . ,x

′
b} ∼ h(Zj, Z

′
j),

and score Xbatch by passing it uncorrupted through the shared encoder and dis-

criminative head. If we see that Xbatch has the best acquisition value so far, we

store it and continue optimizing. Note that this procedure produces a differ-

ent result than simply optimizing Z and decoding once at the end. Recall that

the decoder is stochastic, and the ultimate goal of the inner loop is to produce

sequences with high acquisition value, not just high-scoring latent embeddings.
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We observed that following the unregularized acquisition gradient caused

the decoder entropy to quickly increase, resulting in very uniform proposal dis-

tributions. When the proposal distributions are uniform, LaMBO essentially

performs a variant of random search. However, because Z0 is produced in the

same way the decoder head is trained (i.e. the same corruption process), we

expect that it will be close to other latent embeddings seen during training,

and the decoder entropy will be relatively low. These observations motivated

us to include the proposal entropy penalty in Eq. (3.3), to encourage Zj to

stay in a region of latent space where the decoder has non-uniform predictive

distributions.

We also considered choosing a small step-size η to implicitly confine Zj

to a small region around Z0, but we found it difficult to choose η both large

enough to improve the ℓquery and small enough to prevent uniform propos-

als. The proposal entropy penalty also has the added benefit of smoothing

the query loss surface when using acquisitions like NEHVI, which helps make

the inner loop less dependent on a good initialization. Adding a regularization

term for improved control of the acquisition function has been previously stud-

ied in the continuous setting by Shahriari et al. (2016).

3.5 Empirical Evaluation

We now evaluate LaMBO on a suite of small-molecule and large-molecule se-

quence design tasks. In Section 3.5.1 describe our suite of in silico tasks, in-

cluding a new multi-objective large-molecule task which in which we maximize
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Figure 3.4: An ablation of LaMBO’s main components. Starting from our model-based ge-
netic algorithm baseline (uniform proposals), we cumulatively add the elements described
in Section 3.4.4: (1) DAE-generated proposals, (2) DAE proposal optimization following
∇Z [ℓquery] with λ = 0. (see Eq. (3.3)), and (3) DAE proposal optimization with λ = 0.01.
DAE proposals improve performance on all tasks. Proposal optimization is most helpful on
Bigrams where the starting sequence distribution is very unlikely to produce high-scoring
queries. The entropy penalty is detrimental when working with random sequences (a), but
is helpful when working with biological sequences (b-d). The midpoint, lower, and upper
bounds of each curve depict the 50%, 20%, and 80% quantiles, estimated from 10 trials.

the folding stability and SASA of RFPs. See Appendix C.3.1 for an experi-

ment comparing SSK GPs and DKL GPs, and Appendix C.3.2 for an exper-

iment comparing LSBO and LaMBO. In Section 3.5.2 we show that LaMBO

outperforms strong genetic algorithm baselines in a carefully controlled com-

parison, followed by two investigative experiments in Section 3.5.3 which give

insight into the design choices behind LaMBO. Finally in Section 3.5.4 we ana-

lyze molecules designed by LaMBO, including in vitro wet lab results showing

the discovery of improved RFP variants.

3.5.1 Evaluation procedure

We consider the following in silico evaluation tasks, with full descriptions in

the appendix:

81



• Bigrams: optimize short strings (around 32 tokens) uniformly sampled

from X to maximize the counts of three predetermined bigrams (Ap-

pendix C.1.1).

• logP + QED: optimize SELFIES-encoded small molecules (50-100 to-

kens) w.r.t. logP and QED (Appendix C.1.2).

• DRD3 docking + SA: optimize SELFIES-encoded small molecules

(50-100 tokens) w.r.t. DRD3 docking and synthetic accessibility (SA)

(Appendix C.1.3).

• Stability + SASA: optimize large-molecule RFPs (around 200 tokens)

w.r.t. folding stability and SASA. Both objectives require the 3D protein

structure to compute, however we treat the folding simulator as part of

the black-box objective (Appendix C.1.4).

Unless otherwise noted, each task begins with 512 examples in its start pool,

and collects a total of 1024 online queries in batches of 16. No additional pre-

training data is used. Each method uses the same architecture and hyperpa-

rameters for all tasks (Appendix C.2). We evaluate all methods by comparing

the relative improvement of the hypervolume bounded by the Pareto front af-

ter x black-box function calls compared to the starting hypervolume.

3.5.2 Comparing to Multi-Objective Genetic Optimizers

In Figure 3.3 we compare LaMBO with a MLM decoder head against two

genetic algorithm (GA) baselines. For this experiment we set the entropy
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Figure 3.5: Here we show the old and new Pareto fronts in objective space discovered by
LaMBO in Section 3.5.2. For (a) higher is better for both objectives, and for (b) lower is bet-
ter. For all tasks every point in the old frontier is strictly dominated by at least one point
in the new frontier, and solutions are evenly spread across the new frontiers. In (c) we pro-
vide wet lab measurements of brightness (x axis) and thermostability (y axis) for proteins
optimized for Stability + SASA. Higher is better for both objectives. We discovered new,
non-dominated protein variants for three of the five ancestor proteins in our evaluation set.

penalty at λ = 0.01. The simplest baseline is NSGA-2, a robust model-free

multi-objective GA, which effectively simply randomly mutates solutions along

the Pareto frontier. The other baseline is a model-based GA which also ran-

domly mutates solutions but also screens new queries with a discriminative

model, for which we use the same architecture and acquisition function (NE-

HVI) as LaMBO. Both GA baselines use a uniform mutation proposal distri-

bution. In this experiment all optimizers are only allowed to change a single

token per optimization round, and each optimizer selects base sequences and

token positions in the same way. The model-based GA differs from LaMBO

primarily in two respects: (1) the encoder is trained only through the super-

vised loss, and (2) the proposal distribution is uniform rather than generated

by a DAE. In fact LaMBO can be viewed as a generalization of the model-

based GA, where the proposal distribution is learned and optimized, rather
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Figure 3.6: Pareto fronts of LaMBO and a variant that optimizes the expected average ob-
jective value on the RFP task. NEHVI incentivizes more exploration of the frontier extrem-
ities, resulting in solutions representing more diverse functional tradeoffs and slightly higher
hypervolume.

than fixed a priori. The effect of (2) is most strongly seen in logP + QED,

since the task requires very little exploration and the SELFIES vocabulary for

small molecules is significantly larger than the amino acid vocabulary for pro-

teins. LaMBO performs well on all four tasks, particularly those involving nat-

ural sequences (b-d). In contrast the starting distribution over sequences in

the Bigrams task has the highest possible entropy, so LaMBO learns a good

sampling distribution more slowly.

3.5.3 Analyzing LaMBO

Having demonstrated that LaMBO compares favorably to genetic optimiz-

ers, we now examine the different components of LaMBO and how each con-

tributes to performance. We first disentangle the effect of replacing a uniform

proposal distribution with a DAE-generated one, and the effect of optimizing
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the proposal distribution by gradient descent on ℓquery. In Figure 3.4 we in-

terpolate between the model-based GA baseline in Figure 3.3 and LaMBO by

cumulatively adding DAE-generated proposals, proposal optimization, and the

proposal entropy penalty. We find that unoptimized DAE proposals with NE-

HVI screening is a strong baseline on all tasks. Proposal optimization is the

most useful in Bigrams, where the true non-dominated solutions P∗ lie far

outside the starting sequence distribution, requiring more exploration. For the

same reason the entropy penalty is somewhat detrimental specifically in Bi-

grams, since it keeps new queries near those previously seen. See Figure C.4

in Appendix C.3 for more discussion.

In Figure 3.6, we evaluate the sensitivity of LaMBO to the choice of acquisi-

tion function on the RFP task. We compare the final Pareto frontier obtained

with a simple multi-objective scalarization (averaging normalized scores) to

the frontier obtained with NEHVI. Score averaging focuses optimization on so-

lutions with similar tradeoffs, pushing the interior of the frontier out quickly.

This behavior leads to less exploration than NEHVI and thus a slightly lower

hypervolume of 1.51 as compared to NEHVI’s hypervolume of 1.57. Our find-

ings corroborate similar results in previous work comparing scalarization and

hypervolume-based acquisitions in different problem settings (Emmerich, 2005;

Emmerich et al., 2011; Daulton et al., 2020a).
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← better logP better QED →

7a.1: (8.84, 0.07) 7a.2: (6.59, 0.65) 7a-3: (4.48, 0.89) 7a.4: (3.02, 0.93)
← better docking better SA →

7b.1: (-12.4, 4.61) 7b.2: (-11.4, 1.86) 7b.3: (-8.2, 1.31) 7b.4: (-5.4, 1.05)

Figure 3.7: Example molecules at varying points on the new Pareto fronter discovered by
LaMBO in Section 3.5.2 for logP + QED (top) and DRD3 docking + SA (bottom). Un-
der each molecule we show the objective values as index : (y1, y2). From left to right y1 wors-
ens and y2 improves. The Pareto frontier is a rich, low-dimensional space that can be ana-
lyzed much more easily than the whole search space.

3.5.4 Analyzing Sequence Designs

Though metrics like hypervolume are useful for conducting baseline compar-

isons and ablation studies, such metrics do not give much insight into more

qualitative aspects of the sequences we are designing. In Figure 3.5(a-b) we

show the Pareto fronts found by LaMBO for our two small-molecule tasks,

as we did in Figure 3.1 for the large-molecule task. ∗ For every task every se-

quence on the old frontier is strictly dominated by at least one sequence on

the new frontier.

So far we have shown that LaMBO can optimize in silico objectives effec-

tively, and argued in Appendix C.1.4 that the Stability + SASA objectives
∗We do not visualize the Pareto frontier for Bigrams because the task has more than two

objectives.

86



are likely correlated with properties of RFPs we actually wish to optimize in

the real world, specifically brightness and thermostability. In Figure 3.5(c) we

evaluate in vitro protein sequences designed by LaMBO to optimize Stability

+ SASA, reporting brightness (log relative fluorescence units, log-RFU) and

thermostability (protein melting temperature). We discovered non-dominated

variants of three of the five ancestor sequences in our evaluation set, includ-

ing strictly dominant variants of mScarlet and DsRed.M1, with inconclusive

results for the other two ancestor sequences. See Appendix C.1.5 for more de-

tails about our experimental procedure and results. Our results indicate that

Stability + SASA are good in silico proxy objectives for a real-world pro-

tein design task.

In Figure 3.7 we visualize solutions at different points on the optimized

Pareto frontiers found by LaMBO for our two small-molecule tasks. Intrigu-

ingly, we find that although we did not specifically optimize for solution di-

versity in sequence space, the sequences change significantly as we move along

the frontiers. In contrast, many generative-only approaches use heuristics to

explicitly encourage diversity in sequence space and prevent solution collapse.

Some of the proposed molecules shown have features such as large macro-

cycles in 7a.2 and 7b.1, or three-carbon rings in 7a.3 and 7a.4, that are likely

not synthetically accessible (Gao et al., 2021). However, we note that logP

+ QED does not explicitly incentivize accessibility, and remarkably one can

deduce that molecules with large macrocycles are difficult to synthesize even

with little knowledge of chemistry by simply comparing molecules 7(b)-1 and
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7(b)-2. Our results highlight the multi-objective nature of drug design, the

need for careful objective selection (i.e. target discovery), and the human-

interpretable insights that can be gained by studying the differences between

non-dominated solutions found by machine learning methods.

3.6 Discussion

Drug design is quickly emerging as an extremely important application of ma-

chine learning. BayesOpt has extraordinary potential for this domain, but

existing approaches struggle to extend to high-dimensional, discrete, multi-

objective design tasks. We have shown how deep generative models can be

integrated with BayesOpt to address these challenges, achieving good sample

efficiency and solution quality across a range of design tasks. Moreover, we

introduced a new large-molecule task, which provides a challenging and real-

istic benchmark with which to evaluate new methods for biological sequence

design. Finally we successfully optimized red fluorescent proteins in vitro, and

showed how characterizing the Pareto frontier can lead to useful, interpretable

scientific insights.

In the short term, we are excited to combine LaMBO with large specialized

pretrained generative models for antibodies (Ruffolo et al., 2021). The selec-

tion of mutation sites in the initialization procedure in Section 3.4.3 could also

be improved beyond uniform random sampling. In the longer term, there are

also many promising developments in BayesOpt methodology that have yet

to be explored for sequence design, such as non-myopic acquisition functions
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(Jiang et al., 2020b), multi-fidelity acquisition functions to determine the type

of experimental assay and number of replications (Kandasamy et al., 2017;

Wu et al., 2019), rigorous treatment of design constraints (Eriksson et al.,

2019), and the coordination of many parallel drug development campaigns by

optimizing risk measures across a whole compound portfolio (Cakmak et al.,

2020). BayesOpt with multi-modal inputs is a particularly exciting direction,

allowing scientists to combine many different sources of experimental data, in-

cluding 3D structure and raw instrument output (Jin et al., 2021). BayesOpt

itself can also be developed for greater resilience to model misspecification,

miscalibration, and covariate shift, all of which are important in drug design

tasks. Finally, our work also the highlights the need for better benchmarks to

evaluate drug design methods.

While there are still many challenges to overcome, there is a path for Bayesian

optimization to revolutionize drug design, profoundly improving our lives, and

changing the way we approach scientific discovery.
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... all the theoretical constructions ... which are

used in the various branches of physics are only

imperfect instruments to enable the world of

empirical fact to be reconstructed in our minds.

Richard von Mises

4
Conformal Bayesian Optimization

4.1 Motivation

In the last chapter we saw how BayesOpt can be used to define a coherent

strategy for active data collection in contexts like drug design. To continue

this scenario, imagine this: you are a computational specialist working with

an interdisciplinary team to design an antibody therapy targeting a novel anti-
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gen. Your job is to crunch data coming in from a wetlab team and return as

output the specific batch of antibody sequences that should be synthesized

and tested next. You are confident in your surrogate model, which scores well

on random holdout validation sets, and you are confident that you are able to

find sequences that maximize your expected utility.

In the past your proposed sequences have not performed well, but you have

repeatedly reassured the wetlab team that the surrogate simply needs more

training data. Your latest batch also performs poorly. Even worse, it is clear

that the prediction sets generated by the surrogate are untrustworthy, with

measurements frequently falling outside their predicted range. In the post-

mortem analysis of the last batch the wetlab team wonders, understandably,

why they are taking recommendations from an unreliable model. Excited to

explain Bayesian decision theory, you begin, “You see, if we assume the true

data generation process is in fact one of the hypotheses in our hypothesis class...”

To your surprise your colleagues are not convinced. In the first place it is very

clear that the true data generation process is much more complex than any

of the available models. In the second place your notion of utility does not

seem to place any value on reliable, observable outcomes, focusing instead on

properties of an abstract model. The wetlab team calls for a halt until you

demonstrate the your recommendations are based on prediction sets that reli-

ably include actual measurements. Chastened, you end the meeting and search

for a solution.

This chapter describes one such solution.
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4.2 Overview

As BayesOpt agents are called upon to help guide decision-making processes

with significant impact and consequences, it is critically important to guaran-

tee that their recommendations are not just optimal under ideal conditions,

but also robust and reliable under adverse conditions. Specifically, we want to

ensure that our agents can methodically search high-dimensional spaces, and

we want to be sure that when an outcome is predicted with high confidence,

that outcome usually occurs.

4.2.1 Internal Coherence Is Not Enough

There are two main factors preventing BayesOpt agents from exhibiting these

two traits. First the notion of utility encoded in commonly-used acquisition

functions like upper confidence bound (UCB) causes our agents to prioritize

points far from the training data, which can lead to erratic recommendations

when the search space is so high-dimensional that the space of distant, unob-

served points is nearly inexhaustible (Siivola et al., 2018; Wang et al., 2018;

Eriksson et al., 2019). Second, our agents usually predict outcomes with Bayes

β-credible sets, but in general there is no direct relationship between the sub-

jective credibility of an outcome and the objective frequency of that outcome,

a gap that is exacerbated by erroneous modeling assumptions (Grünwald &

Van Ommen, 2017). Unlike credible sets, frequentist prediction sets can be

designed such that the prediction confidence directly corresponds to the ex-

pected coverage, i.e. the frequency that the outcome falls within the predic-
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Figure 4.1: A motivating example of feedback covariate shift. We want x∗ ∈ [0, 1]2 which
maximizes the Branin objective (a), starting from 12 examples in the upper right (the black
dots). An acquisition function like UCB (b) selects the next query (the red star) far from any
training data, where we cannot guarantee reliable predictions. Given a miscoverage tolerance
α, conformal UCB (c) directs the search to the region where conformal predictions are guar-
anteed coverage of at least (1 − α). The boundary of the search space (the dashed black line)
is the set of x with importance weights (d) exactly equal to α. For each x the importance
weight is proportional to the ratio of the likelihood of selecting x as the next query point to
the likelihood of drawing x from the train distribution.

tion set (Wasserman, 2008).

4.2.2 Bayesian and Frequentist Methods Are Complementary

Conformal prediction sets in particular come with coverage guarantees that

hold even if the underlying model is misspecified (Vovk et al., 2005). Fur-

thermore conformal prediction has a simple mechanism to correct for covari-

ate shift, which occurs when we systematically bias our queries (e.g. towards

regions of search space with high acquisition value). Once we recognize the

tendency of BayesOpt agents to push test points away from train data as a

phenomenon known as feedback covariate shift (FCS), we can see that confor-

mal prediction offers an elegant solution (Fannjiang et al., 2022). The biggest

drawback of conformal prediction is it cannot easily be used to reason about

epistemic uncertainty, which is crucial to manage explore-exploit tradeoffs.
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4.2.3 Key Ideas and Contributions

We now present conformal Bayesian optimization, a method that is both Bayesian

and frequentist, with a motivating example in Figure 4.1. Conformal BayesOpt

adjusts how far new queries want to move from the train data simply by choos-

ing an acceptable miscoverage tolerance α ∈ (0, 1]. If α = 1 then we recover

conventional BayesOpt, but if α < 1 then the search will be directed to the

region where conformal predictions are guaranteed coverage of at least (1 − α).

Additionally conformal BayesOpt predicts outcomes via conformal Bayes pre-

diction sets with coverage guarantees that are robust to model misspecifica-

tion. In summary the primary contributions of this chapter are as follows:

• Conformal versions of common BayesOpt acquisition functions to direct

queries towards regions of the search space where the surrogate predic-

tions are valid.

• An efficient, differentiable implementation of full conformal Bayes for

GP regression models allowing queries to be optimized with gradient-

based methods, and a practical estimation procedure for the resulting

implicit density ratio.

• Demonstrations on synthetic black-box optimization tasks and real rank-

ing tasks that conformal BayesOpt has comparable sample-efficiency to

baselines, while improving query coverage significantly.
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4.3 Limitations of Bayesian Inference

As discussed in Chapter 1.4 we consider optimization problems of the form

maxx∈X (f
∗
1 (x), . . . , f

∗
m(x)), where each f ∗

i : X → R is an expensive, black-box

function of decision variables x ∈ X , and m is the number of objectives. We

typically assume that we do not observe f ∗ directly, but instead receive noisy

labels y ∈ Y according to some likelihood p∗(y|f).

4.3.1 Common Examples of Model Misspecification

In order to do Bayesian inference at all, we must assume that our prior p(f)

actually supports f ∗. For example, in BayesOpt it is very common to choose a

stationary kernel κ (such as a Matérn kernel) and assume f ∗ ∼ GP (0, κ). Sta-

tionary kernels are translation-invariant and encode a strong bias towards uni-

formly smooth functions, but in practice we may encounter objectives that are

smooth in some regions of X , and rough in others. Furthermore, we typically

do not know the true likelihood p∗(y|f), and often choose p(y|f) = N (f, σ2Im)

for convenience. In reality the true noise process may be correlated with x,

across objectives, or may not be Gaussian at all (Assael et al., 2014; Griffiths

et al., 2019; Makarova et al., 2021). Circumstances like these can cause Bayes

β-credible prediction sets (defined in Chapter 1.2) to correspond very poorly

with the external world.

In particular, β-credible sets may exhibit poor coverage, meaning the fre-

quency of “implausible” events outside the set happening is much more than
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1 − β (Bachoc, 2013).∗ Nevertheless, incorrect modeling assumptions do not

make Bayesian inference useless. Bayesian decision theory is very practical

compared to frequentist ideas like u-admissable decision rules, which are also

affected by modeling assumptions and can involve odd reasoning about data

that we could have seen but did not (Berger, 2013).

4.3.2 Ending the Search for the Perfect Model

Not only are incorrect modeling assumptions virtually inevitable, they often

have significant practical benefits. Continuing our previous examples, f ∗ may

be just smooth enough that a BayesOpt agent using a smooth stationary ker-

nel (e.g. RBF) performs better than one using a kernel with weaker induc-

tive biases. Indeed, theoretical convergence rates for acquisition functions like

UCB suggest that for BayesOpt we want to use the smoothest possible model,

subject to the constraint that we can still model f ∗ sufficiently well (Srinivas

et al., 2010). Similarly isotropic Gaussian likelihoods have significant computa-

tional advantages, and there is no guarantee that constructing a task-specific

likelihood for every optimization problem would be especially useful. The solu-

tion is not to blind ourselves to the error in our assumptions, nor is it to par-

alyze ourselves in pursuit of a perfect model. Instead we should develop meth-

ods that can gracefully accommodate imperfect models, balancing internal co-

herence with external validity. Conformal prediction is particularly appealing

in this regard, since it can reliably produce externally valid predictions, even
∗We emphasize that this does not necessarily imply that either p(f |D) or the credible set

were computed incorrectly, it may simply indicate a poor modeling assumption.
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Figure 4.2: Constructing a conformal prediction set Cα(xn) in the regression setting. First,
(a) we choose some y′ ∈ Y and guess yn = y′, computing conformal scores on the train
examples (Xseen, Yseen) and the guessed example (xn,yn), (b) we note which examples score
better than our guess (shown in blue), and mask out the corresponding importance weights.
(c) we compute the partial sums ŵi of the masked importance weights, adding y′ to Cα(xn) if
ŵn > α, (d) repeat steps (a - c) for many guesses of yn. Accepted and rejected guesses are
shaded dark and light, respectively.

with a misspecified model.

4.4 Conformal Prediction

See Shafer & Vovk (2008) for a complete tutorial on conformal prediction,

or Angelopoulos & Bates (2021) for a modern, accessible introduction. Vovk

et al. (2005) is also an excellent reference.

4.4.1 What is Conformal Prediction?

Informally, a conformal prediction set Cα(x) ⊂ Y is a set of possible labels for

a test point xn. Candidate labels y′ are included in Cα(x) if the resulting pair

(xn,y
′) is sufficiently similar to actual examples seen in the past. The degree

of similarity is measured by a score function s and importance weights (IWs)

w, and the similarity threshold is determined by the miscoverage tolerance α.

In Figure 4.2 we visualize the process of constructing Cα(x). More formally,
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Definition 4.4.1. Let α ∈ (0, 1], (x0,y0), . . . , (xn−1,yn−1) ∼ p(x,y) = p(x)p(y|x)

and (xn,yn) ∼ p′(x,y) = p′(x)p(y|x), with wi ∝ p′(xi)/p(xi) s.t.
∑

k wk = 1.

The conformal prediction set corresponding to the score function s : X × Y → R

is defined as

Cα(xn) :=

{
y′ ∈ Y

∣∣∣∣ n∑
i=0

1 {s(xi,yi) ≤ s(xn,y
′)}wi > α

}
. (4.1)

In the special case where (x0,y0), . . . , (xn,yn) are fully exchangeable (e.g.

IID), then wi = 1/(n + 1), ∀i. We use importance weighting in order to cor-

rect for covariate shift (Tibshirani et al., 2019). Conformal prediction enjoys

a frequentist marginal coverage guarantee on Cα(xn) with respect to the joint

distribution over (x0,y0), . . . , (xn,yn),

P[yn ∈ Cα(xn)] ≥ 1− α, (4.2)

meaning if we repeatedly draw n training examples from p(x,y), and draw

a single test example (xn,yn) from p′(x,y), Cα(xn) will contain the observed

label yn at least (100× (1−α))% of the time. A prediction set with a coverage

guarantee like Eq. (4.2) is said to be conservatively valid at the 1− α level.

4.4.2 What Assumptions Does the Coverage Guarantee Require?

The assumptions underlying the coverage guarantee for conformal prediction

are strikingly mild. Specifically we must assume (x0,y0), . . . , (xn,yn) are pseudo-
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exchangeable. Note that although every IID sequence of random variables

is exchangeable, not every exchangeable sequence is IID. Similarly pseudo-

exchangeability is not “IID-lite”, where every element of the sequence except

for the last is IID. A sequence is pseudo-exchangeable if the joint density can

be factored into terms that only depend on the values of the sequence, not the

ordering (Fannjiang et al., 2022). Informally, we can see that BayesOpt satis-

fies pseudo-exchangeability because the distribution over training data is just

the mixture of all the previous query distributions. Furthermore once queries

are labeled and added to the training data, they can be shuffled at will with-

out changing the next query distribution.

Any real-valued, measurable score function will produce a valid prediction

set (Vovk et al., 2005). There are trivial examples that produce trivially valid

prediction sets Cα(x) = Y , ∀x, ∀α. In general with conformal prediction if

we choose s poorly we pay a price in terms of efficiency (i.e. the volume of

the prediction sets), but validity is still maintained. In other words, the con-

formal prediction coverage guarantee does not assume the surrogate model is

correctly specified, nor does it require strong smoothness assumptions on f ∗.

4.4.3 Full Conformal Bayes

Choosing the following score function:

s(xi,yi) = log p(yi|xi, D ∪ {(xn,y
′)}),
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corresponds to full conformal Bayes prediction (Fong & Holmes, 2021). Con-

ditioning an existing posterior p(y|xi, D) on an additional observation (xn,yj)

is commonly referred to as “retraining” in the conformal prediction literature.

We discuss efficient computation of full conformal Bayes in Section 4.6.2. If

the surrogate just so happens to be correctly specified, then full conformal

Bayes is the optimal choice of score function, meaning it provides the most

efficient prediction sets (i.e. smallest by expected volume w.r.t. the prior p(f))

among all prediction sets that are valid at the 1 − α level (Hoff, 2021). In the

typical situation where we think the surrogate is plausible but do not really

believe it, full conformal Bayes rewards us if the surrogate turns out to be

right, yet in all cases it produces valid predictions — even if the surrogate is

wrong.

4.5 Related Work

4.5.1 Bayesian Inference and Model Misspecification

Van Der Vaart & Van Zanten (2011) and Wynne et al. (2021) give bounds on

the estimation of the GP’s posterior mean and variances in the presence of

misspecification, while Zaytsev et al. (2018) and others (Beckers et al., 2018;

Fiedler et al., 2021) upper bound the estimation error between f ∗ and the GP

predictive mean when the prior covariance is incorrect. Neiswanger & Ram-

das (2021) proposed frequentist confidence intervals guaranteed to contain f ∗

even under a misspecified GP prior. Our work also combines Bayesian and

frequentist methods, however we focus more on the decision-making aspect of
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BayesOpt, rather than the inference subproblem.

4.5.2 Robust BayesOpt

We do not consider corruptions to the queries during execution, see Kirschner

et al. (2020); Fröhlich et al. (2020); Daulton et al. (2022) for work in that vein.

Bogunovic & Krause (2021) is more closely related, proposing a variant of

UCB which can adjust to a misspecified GP prior. Similarly Makarova et al.

(2021) propose a risk-averse variant of UCB to accomodate a misspecified like-

lihood. In contrast, we do not make any assumptions regarding exactly how

our model is misspecified, and we show how to apply our solution to many dif-

ferent acquisition functions.

4.5.3 Conformal Prediction

Our work is most closely related to Fannjiang et al. (2022), who propose a

black-box optimization method based on conformal prediction specifically to

address feedback covariate shift. However, because they assume new queries

are drawn from a known, closed-form density, and because exact conformal

prediction is not differentiable, their approach cannot be easily extended to

most BayesOpt methods.∗ Bai et al. (2022) propose a differentiable approxi-

mation of conformal prediction, but it requires solving a minimax optimization

subproblem. Stutz et al. (2021) independently proposed a continuous relax-

ation of conformal prediction, like our work, but only for fully exchangeable
∗For example, BoTorch relies heavily on L-BFGS-B to optimize acquisition functions

(Balandat et al., 2020a).
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data. We propose a more general form that allows for covariate shift, and we

also show how to estimate the importance weights when the queries are drawn

from an implicit density.

4.6 Conformal Bayesian Optimization

We now share the key ideas behind conformal BayesOpt. First in Section 4.6.1

we describe how conformal prediction sets can be incorporated into common

BayesOpt acquisition functions such as EI, next in Section 4.6.2 we discuss

how to compute the required integrals efficiently and differentiably, and finally

in Section 4.6.3 we show how to correct for covariate shift. In Appendix D.3.1

we provide a detailed overview explicitly showing how all the key pieces fit

together.

4.6.1 Conformal acquisition functions

By the sum rule of probability, we can rewrite the Bayes posterior p(f(x)|D)

as an integral over all possible outcomes y|x,

p(f(x)|D) =

∫
y∈Y

p(f(x)|D ∪ {(x,y)})p(y|x, D)dy. (4.3)

Eq. (4.3) states that we can obtain p(f(x)|D) by marginalizing the joint pos-

terior p(f(x),y|x, D) w.r.t. y. p(f(x)|D) can also be seen as a Bayesian model

average, where we condition each component model on a different potential

observation (x,y), and weight the components by p(y|x, D).
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Note that we are free to change the component weights to any other valid

distribution over y we like. Choosing the Bayes posterior p(y|x, D) will re-

sult in a Bayes-optimal policy w.r.t. our utility function u, but the value of

Bayes-optimality is questionable if we do not really believe the surrogate. If

the surrogate is misspecified, peaks in p(y|x, D) may not correspond to the

most likely outcome at all, degrading the quality of our queries. Here we intro-

duce the conformal Bayes predictive posterior pα(y|x, D), defined as

pα(y|x, D) :=


(1− α)/Z1 if y ∈ Cα(x),

αp(y|x, D)/Z2 else,

where Z1, Z2 are normalization constants.
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Figure 4.3: An illustration of
pα(y|x, D).

We are partitioning the outcome space

into two events, either y ∈ Cα(x) or it is

not. We know that y ∈ Cα(x) with frequency

(1 − α), since Cα(x) is a valid prediction set,

and we do not consider any particular y ∈

Cα(x) to be more likely than another, since

the coverage guarantee holds for Cα(x) as a

whole. ∗ We also expect that y /∈ Cα(x) with

frequency α, and we weight each y /∈ Cα(x)

by p(y|x, D) to form a proper density (i.e. a density that integrates to 1). See
∗We could instead use a conformal predictive density here (Vovk et al., 2017; Marx et al.,

2022)

103



Figure 4.3 for an illustration.

If we had noiseless observations (i.e. yi = f(xi)), we could use pα(y|x, D)

directly when computing the acquisition value of new queries. However manag-

ing the explore-exploit tradeoff with noisy outcomes requires us to distinguish

between reducible and irreducible (i.e. epistemic and aleatoric) uncertainty.

If we do not, optimistic acquisition functions like UCB may direct us towards

queries whose outcomes are very noisy.

Substituting pα(y|x, D) for p(y|x, D) in Eq. (4.3) results in the conformal

Bayes posterior pα(f(x)|D),

pα(f(x)|D) :=
1− α

Z1

∫
Cα(x)

p(f(x)|D ∪ {(x,y)})dy (4.4)

+
α

Z2

∫
Y−Cα(x)

p(f(x)|D ∪ {(x,y)})p(y|x, D)dy.

In Appendix D.2.1 we show that pα(f |D) converges pointwise to p(f |D) as

α→ 1.

Now that we have pα(f(x)|D), we can ”conformalize” any acquisition func-

tion written in the form of Eq. (1.5) by substituting pα(f(x)|D) for p(f(x)|D).

For example, as noted in Section 1.4, we can take u(f(x), D) = [f(x)−maxyi∈D yi]+

and computed the expectation w.r.t. p(f(x)|D) to obtain the expected im-

provement (EI) acquisition function. Similarly we write conformal EI (CEI)

as,

CEIα(x) =

∫
[f(x)−max

yi∈D
yi]+pα(f(x)|D)df(x). (4.5)
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In Appendix D.2.3 we derive conformal variants of other popular acquisition

functions, including ones for batched queries and multiple objectives.

4.6.2 Efficient differentiable full conformal prediction with GPs

Efficient retraining: in the regression setting, we must compute

s(xi,yi) = log p(yi|xi, D ∪ {(xn,yj)}), ∀i ∈ {0, . . . , n}, yj ∈ Ycand,

where Ycand is some discretization of Y. As we discussed at length in Chapter

2, this sort of incremental posterior update can be done very efficiently if the

surrogate is a GP regression model, and we will later reuse the conditioned

posteriors to estimate expectations w.r.t. pα(f(x)|D). Note that computing

the GP posterior likelihood of training data can be numerically unstable, see

Appendix D.3 for a stable approach. By contrast, other Bayesian predictive

posteriors (e.g. from Bayesian neural networks) are conditioned on training

data via iterative methods such as gradient descent, making computing the

full conformal scores very expensive.

Efficient discretization of Y: since we can efficiently compute the full

conformal Bayes score function, we now consider how to choose Ycand. In the

simple case of a single objective with small query batches (q ≤ 2), then Ycand

can be a regularly sampled dense grid, and y can be integrated out with nu-

merical quadrature. However dense grids are inefficient since they must be

wide enough to capture all possible values of y and dense enough to pinpoint

the boundary of Cα(x) with reasonable accuracy. Here we observe that even if
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Figure 4.4: Here we should how to construct full conformal Bayes prediction sets starting
with a Bayes posterior p(y|x, D). In this example D is composed of n = 27 noisy observations
(shown as black dots) of the true objective (shown as a black dashed line) and α = β ≈ 0.19.
In panel (a) we show Kβ(x), the β-credible prediction set. In panel (b) we show Ycand pop-
ulated by samples from p(y|x, D). In panel (c) we show Cα(x), the conformal prediction set.
The coverage of Cα(x) is noticeably better than Kβ(x) in regions where there is little training
data, even though the nominal level of confidence is the same.

we do not fully believe p(y|x, D), it is still our best guess of where y|x should

be, so instead of a dense grid we populate Ycand with proposals yj ∼ p(y|x, D)

(Figure 4.4).∗ This approach not only reduces computational effort for low-

dimensional outcomes, but also allows us to extend to multi-objective tasks.

Instead of numerical quadrature, we can use importance-weighted Monte

Carlo estimation to approximate integrals involving y as follows:

∫
g(y)dy ≈ 1

|Ycand|
∑

yj∈Ycand

1

p(yj|x, D)
g(yj). (4.6)

Differentiable conformal prediction: Next, we consider how to approxi-

mately compute full conformal Bayes prediction sets differentiably. First, the

definition of Cα(xn) in Eq. (4.1) can be broken down into a sequence of simple
∗For small values of α we have found that doubling the covariance p(y|xn, D) can help

ensure that the grid is sufficiently wide.
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Algorithm 4: Computing differentiable conformal prediction masks
Data: train data D = {(xi, yi)}n−1

i=0 , test point xn, importance weights w,
label candidates Ycand, score function s, miscoverage tolerance α,
relaxation strength τ .

mj = 0, ∀j ∈ {0, . . . , |Ycand| − 1}. (initialize conformal prediction mask)
for yj ∈ Ycand do

sj = [s(x0, y0) · · · s(xn, yj)]
⊤. (compute conformal scores)

hj = sigmoid((sj − sjn)/τ). (compute weight mask)
ŵj = 1⊤(hj ⊙w). (sum masked importance weights)
mj ← sigmoid((ŵj − α)/τ). (update prediction mask)

end

Result: m

vector operations interspersed with Heaviside functions. The Heaviside func-

tion is piecewise constant, with ill-defined derivatives, so we replace it with its

continuous relaxation the sigmoid function. Our procedure is summarized in

Algorithm 4. Informally, the output mj of the final sigmoid can be interpreted

as the probabilility of accepting some yj into Cα(xn). The smoothness of the

relaxation is controlled by a single hyperparameter τ ∈ (0,+∞). As τ → 0 the

relaxation becomes exact but the gradients become very poorly behaved.

Once we have the prediction mask m we estimate unweighted integrals of g

over Cα(x) as

∫
Cα(x)

g(y)dy ≈ 1

1⊤m

k−1∑
j=0

mj

p(yj|x, D)
g(yj),
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and estimate weighted integrals over the complement Y − Cα(x) as

∫
Y−Cα(x)

g(y)p(y|x, D)dy ≈ 1

1⊤(1−m)

k−1∑
j=0

(1−mj)g(yj).

Bringing everything together, we have differentiable Monte Carlo estimates of

CEIα(x),

CEIα(x) ≈ (1− α)v⊤
0 u+ αv⊤

1 u, u = [u(b0, D), . . . , u(bk−1, D)]⊤,

(v0)i =
mi

p(yi|x)

(∑
j

mj

p(yj|x)

)−1

, (v1)i = (1−mi)

(∑
j

(1−mj)

)−1

,

(4.7)

where bj ∼ p(f(x)|D ∪ {(x,yj)}). See Appendix D.2.2 for more details.

4.6.3 Accounting for Feedback Covariate Shift

If we were merely ranking queries that were exchangeable with D, then there

would be no need to correct for covariate shift. However, the explicit goal of

applications like drug discovery is to discover novel candidates with excep-

tional attributes (i.e. out of distributions observations relative to the training

data). In that context, the more successfully we identify unexplored, promis-

ing regions of X , the more severe we can expect the covariate shift between

our training data and our “test” data to be.

Density ratio estimation: as we saw in Section 4.4, adapting Cα(x) to co-

variate shift requires estimating importance weights wi ∝ r(xi) = p′(xi)/p(xi),
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where p′(x) is the “test” distribution from which we draw candidate query

points. If we know the densities p(x) and p(x′) the we can compute r(x) very

easily, but in general we only have samples from p(x). Furthermore if we wish

to optimize queries with gradient based methods then p′(x) is implicitly de-

fined as the distribution over xt iterates induced by gradient ascent on a(x)

from some initial distribution on x0. Fortunately we can still obtain samples

from p′(x) by sampling from the energy distribution, p′(x) ∝ exp{a(x)} via

stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011).

Once we have samples from p(x) (which are already in D) and p′(x), we es-

timate r(x) with a probabilistic classifier (Sugiyama et al., 2012). We assign

labels 1 to samples from p′(x) and 0 to samples from p(x), defining new condi-

tional distributions

p′(x) = p(x | z = 1) and p(x) = p(x | z = 0).

By Bayes theorem, we rewrite r(x),

r(x) =
p(z = 0)

p(z = 1)

p(z = 1 | x)
p(z = 0 | x)

, (4.8)

such that we need only train a probabilistic classifier p̂(z | x) to discriminate

the sample labels. We estimate the prior ratio p(z = 0)/p(z = 1) empirically.

Which comes first, the acquisition function or the ratio estima-

tor? To estimate r as just described we clearly must be able compute gra-

dients of a to draw the required samples from p′(x) ∝ exp{a(x)}. However

109



taking a = CEIα (or another conformal acquisition) introduces a second and

more serious issue, since a itself then depends on r. We need an estimator r̂

that simultaneously induces p′(x) ∝ exp{CEIα(x)} and accurately estimates

p′(x)/p(x). For example, we could assume r̂(x) = 1,∀x, but the induced p′

likely does not satisfy p′(x)/p(x) = 1,∀x.

To solve these issues, we begin with an initial estimator r̂0(x) = 1, ∀x, and

for t ≥ 0 we sample from p′(x) ∝ exp{CEIα} via SGLD using the current

estimator r̂t, then update the classifier on those new samples to produce an

updated estimator r̂t+1 for the next iteration. To keep the acquisition sur-

face from changing too rapidly (potentially destabilizing our SGLD chain),

we compute an exponential moving average of the classifier weights, and the

averaged weights are used when computing gradients of a(x). Our approach is

analogous to (and directly inspired by) bootstrapped Q-learning (Mnih et al.,

2013).

4.7 Empirical Results

In this section we empirically evaluate conformal BayesOpt. In Section 4.7.2

we investigate robustness to misspecified likelihoods. In Section 4.7.3 we eval-

uate conformal variants of EI, noisy expected improvement (NEI) and UCB

on single-objective tasks, and compare the empirical coverage of credible and

conformal prediction sets. In Section 4.7.4 we present additional results on

multi-objective tasks. See Appendix D.6 for experimental details.
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Figure 4.5: Here we quantify our approximation error in a simplified problem. The shaded
regions in each panel depict a KDE estimate of the distribution of coverage when n = 64 and
α = 0.125, estimated from 32 independent trials. The black dashed line indicates 1 − α. In
panel (a) we compare the coverage of Bayesian credible and randomized conformal prediction
sets, if τ = 0 and that we have access to a density ratio oracle. Conformal prediction provides
much more consistent coverage. Next in panel (b) we show replacing the density ratio oracle
with learned density ratio estimates has fairly minimal effect on the coverage of the resulting
conformal prediction sets. In panel (c) we investigate the effect of the sigmoid temperature τ
when p(x) ̸= p(x). Similarly in panel (d) we investigate the effect of τ in the IID case when
p(x) = p′(x). In general increasing τ tends to make the prediction sets more conservative.

4.7.1 Investigating Approximation Error

We begin with a carefully controlled experiment to investigate the effect of the

approximations we introduced in Section 4.6. We consider a simplified setting

where p(x) and p′(x) are known 3D spherical Gaussian distributions, f is the

3D Hartmann function, and ε ∼ N (0, 0.05).

4.7.2 Conformal BayesOpt with a Misspecified Likelihood

Recall from Section 4.3 that we often assume a simple homoscedastic likeli-

hood p(y|f) = N (f, σ2), where σ2 is a learned constant. In Figure 4.6a we

show a modified 1D sinc function, where f ∗(x) = (10 sin(x) + 1) sin(3x)/x,

with input-dependent noise ε(x) ∼ N (0, 2/(1 + ex/2)), and X = [−10, 10].

In Figure 4.6b we compare conformal BayesOpt with p(y|f) = N (f, σ2) to
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Figure 4.6: BayesOpt results on heteroscedastic, single-objective tasks sinc and double-knot
(reporting median and its 95% conf. interval, estimated from 16 trials). (a) sinc function (left
y axis) and noise process (right y axis). (b) sinc task, best objective value found by conformal
BayesOpt with homoscedastic likelihoods compared to baselines, risk-averse UCB and penal-
ized EI, both with heteroscedastic likelihoods. (c) double-knot task, same experiment as in
panel (b). Conformal BayesOpt outperforms the specialized baselines on both tasks, despite
being mis-specified.

two baselines specifically designed for this kind of task, specifically risk-averse

UCB (Makarova et al., 2021) and penalized EI (Griffiths et al., 2019), which

both use heteroscedastic likelihoods and custom acquisition functions. Both

baselines require multiple replicates of each query to update their likelihoods,

which significantly reduces sample efficiency. In Figure 4.6c, we repeat the

same experiment on a second heteroscedastic task involving a double-knot

function (Gramacy, 2005), where f ∗(x) = −x1e
−x1−x2 , ε(x) ∼ N (0, ||x||2),

and X = [−2, 6]2. Despite having a simpler, misspecified noise model, confor-

mal BayesOpt outperforms its more specialized counterparts in terms of the

final objective value and in terms of sample efficiency.

4.7.3 Evaluating Single-Objective Conformal Acquisitions

We now investigate the behavior of conformal BayesOpt more closely, evaluat-

ing the on synthetic Levy and Ackley functions with homoscedastic noise and

varying input dimensionality. Here, we focus on comparing with both a stan-
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(a) Levy-5, q = 3.
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Figure 4.7: Top row: Best achieved across (a) Levy-5, (b) Levy-20, (c) Ackley-5. Mid-
dle row: Query coverage and Bottom row: Heldout set coverage. Here, we compare with
UCB, TuRBO with a UCB acquisition (TR-UCB), and our conformal approach (C-UCB). All
approaches tend to perform similarly in terms of sample complexity, except for C-UCB on
Ackley-20 which reaches a slightly worse optimum. However, C-UCB is signifiantly better cali-
brated in terms of both its queries (middle row) and the heldout set (bottom row) in terms of
reaching achievable queries.

dard acquisition function, upper confidence bound (UCB Srinivas et al., 2010),

as well as trust region Bayesian optimization using the UCB acqusition (Eriks-

son et al., 2019). Further experimental results across a range of query batch

sizes and acquisitions are in Appendix D.5.

We see that the conformal acquisitions perform strongly across problems in

Figure 4.7 (top row), with slightly worse sample complexity on both Ackley di-

mensionalities than TR-UCB. Although rapid objective improvement relative

to standard methods is encouraging, we also contrast the empirical coverage
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Figure 4.8: BayesOpt results on multi-objective tasks BraninCurrin and Penicillin (report-
ing median and its 95% conf. interval, estimated from 25 trials). Left two panels: Both
conformal and standard acquisitions find solution sets with similar hypervolumes. Right two
panels: Credible and conformal empirical coverage curves. The conformal curves track the
target 1− α (black dashed line) better than the credible curves, but both are underconfident.

of credible and conformal prediction sets, which we show in the bottom two

rows.

We set α = 1/
√
n and evaluate the coverage of the 100(1 − α)% credible

and conformal prediction sets on the query points that we are optimizing with

in the middle row. We follow the same procedure but for heldout examples

in the bottom row, again averaged over 50 independent trials. The empirical

conformal coverage curve does not perfectly satisfy our theoretical expecta-

tions, which would predict the average coverage to coincide very closely with

the 1 − α target curve. The conformal coverage curve better tracks and more

predictably the curve for either Bayesian credible set, despite TurBO being

designed specifically for model reliability.

4.7.4 Evaluating Multi-Objective Conformal Acquisitions

Finally, we consider two multi-objective tasks, BraninCurrin with p = 2 ob-

jectives and Penicillin where p = 3 (Liang & Lai, 2021). Here, the goal is

not to find a single x∗, but rather to find a set of all non-dominated solutions,
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the Pareto front. By non-dominated, we mean the set of solutions with the

property that the objective value cannot increase in one dimension without de-

creasing in another. We measure the hypervolume of the current solution set

relative to a reference point (Beume et al., 2009). We consider the expected

hypervolume improvement (EHVI) (Emmerich, 2005; Emmerich et al., 2011;

Daulton et al., 2020b) and noisy expected hypervolume improvement (NE-

HVI) (Daulton et al., 2021a) acquisition functions, and their conformal ana-

logues. In Figure 4.8, we show that conformal acquisitions remain competitive

with standard variants in terms of solution quality. Here, the conformal cover-

age curves track the target curve better than their credible counterparts, but

the impact of discretization error in our estimates of the bounds of Cα plays a

larger role as there are more label dimensions. More results are shown in Ap-

pendix D.5.

4.8 Discussion

We have proposed the conformal Bayes posterior and demonstrated its utility

for reducing the sensitivity of BayesOpt to modeling assumptions, providing a

mechanism to correct for the feedback covariate shift induced during optimiza-

tion and improving the reliability of predictions. Although we focused on GP

surrogates in the low-n regime, we expect many of these ideas to transfer to

much larger models and datasets by replacing full conformal Bayes with split

conformal Bayes, and either augmenting the GP surrogates with deep kernel

learning, or by replacing GPs entirely with linear models operating on pre-
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trained features learned by large self-supervised models. Finally we hope that

this work spurs further interest into understanding the effects of model mis-

specification and covariate shift in the context of BayesOpt specifically and in

experimental design more broadly.
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An author’s most recent word need not be his

last word.

Leonard J. Savage

5
Conclusion

We now leave the reader with a few closing thoughts.

Our work has made heavy use of GPs, and it is natural to wonder about

the future of such work since current trends in ML research point away from

mathematical sophistication towards general-purpose parametric model archi-

tectures pretrained on massive data corpora. If current trends continue, a com-
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mon pattern will likely be to use large pretrained models for automatic feature

engineering, then use either Bayesian linear models or GPs as the probabilistic

“last layer”. In this setting much of the work explored in this thesis can be di-

rectly applied by treating the feature space as the input space for the purposes

of Bayesian inference.

The rising popularity of distribution-free uncertainty quantification methods

like conformal prediction will hopefully cause engineers and scientists to con-

sider more carefully what kind of uncertainty they are trying to measure, and

subsequently to choose the appropriate uncertainty quantification method (or

combination of methods).

Although specific methods may fall in and out of fashion, the principles of

effective decision-making do not change. Decisions should always make use of

all available information (up to resource constraints), should reflect coherent

beliefs and preferences, and should be based on reliably valid predictions of

the outcome.
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Appendices

Appendix A: WISKI Supplementary Material

A.1.1 Efficient Computation of GP Predictive Distributions

In this section we provide a brief summary of a major contribution of Pleiss

et al. (2018a). Since our cached approach to online inference was partially in-

spired by the approach of Pleiss et al. (2018a), it is helpful to first understand

how predictive means and variances are efficiently computed in the batch set-

ting.

The Lanczos algorithm is a Krylov subspace method that can be used as

a subroutine to solve linear systems (i.e. the conjugate gradients algorithm)

or to solve large eigenvalue problems (Golub & Van Loan, 2012). Given a

square matrix A ∈ Rn×n and initial vector b ∈ Rn, the d-rank Krylov sub-

space is defined as Kd(A,b) := span{b, Ab, A2b, . . . , Ad−1b}. The Lanczos

algorithm is an iterative method that produces (after d iterations) an orthog-
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onal basis Qd ∈ Rn×d and symmetric tridiagonal matrix Td ∈ Rd×d such

that qi ∈ Kd(A,b) and Td = Q⊤
d AQd. ∗ If we take A ≈ QdTdQ

⊤
d and com-

pute the eigendecomposition Td = VdΛdV
⊤
d , we can write A ≈ SS⊤, where

S = QdVdΛ
1/2
d . Note that if d = n then the decomposition is exact to numerical

precision. Hence the computational cost of a root decomposition via Lanczos

is O(dn2 + d2) (Trefethen & Bau III, 1997).

The predictive mean caches are straightforward, since they are just the solu-

tion v = (Kaa + σ2I)−1y which can be stored regardless of the method used to

solve the system (i.e. preconditioned CG, Cholesky factorization, e.t.c.). Once

computed, in the exact inference setting the predictive mean is given by

mb|D = Kbav.

For inference with SKI we take v = KuuW
⊤
a (WaKuuW

⊤
a + σ2I)−1y and

mb|D = Wbv.

For exact inference, the predictive covariance caching procedure of Pleiss

et al. (2018a) begins with the root decomposition

Kaa + σ2I = (QdVdΛ
1/2
d )(Λ

1/2
d V ⊤

d Q⊤
d ). (A.1)

Since predictive variances require a root decomposition of (Kaa + σ2I)−1, they
∗Qd is conventionally used to denote the d-rank Lanczos basis.
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store V = Q⊤
d V

⊤
d Λ

−1/2
d and obtain predictive variances as follows:

Sb|D = Kbb −KbaV V ⊤Kab. (A.2)

For inference with SKI the procedure is much the same, except the root de-

composition in Eq. A.1 is replaced with that of the SKI kernel matrix,

WaKuuW
⊤
a + σ2I = (QdVdΛ

1/2
d )(Λ

1/2
d V ⊤

d Q⊤
d ), (A.3)

V = KuuW
⊤
a Q⊤

d V
⊤
d Λ

−1/2
d , and Eq. A.2 is modified to

Sb|D = Kbb −WbV V ⊤W⊤
b . (A.4)

A.1.2 Deriving the WISKI Predictive Mean and Variance

In this section we derive the Woodbury Inverse SKI predictive distributions.

In contrast to Pleiss et al. (2018a), the WISKI predictive mean and covariance

can be formulated in terms of quantities that can be cached in O(m2) space

and updated with new observations in constant time. Recall the form of the

Woodbury SKI inverse, Ma := (σ2K−1
uu +W⊤

a Wa)
−1. For both the predictive

mean and variance we begin with the standard SKI form, and show how to

derive the WISKI form.
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Predictive Mean

mb|D = WbKuuW
⊤
a (WaKuuW

⊤
a + σ2I)−1ya,

= Wb(I + σ−2KuuW
⊤
a Wa)

−1(σ−2Kuu)W
⊤
a ya,

= Wb

(
(σ−2Kuu)(σ

2K−1
uu +W⊤

a Wa)
)−1

(σ−2Kuu)W
⊤
a ya,

= Wb(σ
2K−1

uu +W⊤
a Wa)

−1K−1
uuKuuW

⊤
a ya,

= WbMaW
⊤
a ya.

= Wb(σ
−2KuuW

⊤
a ya − σ−2KuuL(I + σ−2L⊤KuuL)

−1L⊤KuuW
⊤
a ya,

where W⊤
a Wa = LL⊤. The second line follows from the push-through identity

(a special case of the Woodbury matrix identity).

Predictive Covariance The low-rank SKI predictive covariance of a GP is

given (elementwise) by

Sb|D = WbKuuW
⊤
b −WbKuuW

⊤
a (WaKuuW

⊤
a + σ2I)−1WaKuuW

⊤
b

= σ2Wb

(
σ−2Kuu − (σ−2Kuu)W

⊤
a (Wa(σ

−2Kuu)W
⊤
a + I)−1Wa(σ

−2Kuu)
)
W⊤

b

= σ2Wb(σ
2K−1

uu +W⊤
a Wa)

−1W⊤
b ,

= σ2WbMaW
⊤
b

= Wb

(
Kuu −KuuL(I + σ−2L⊤KuuL)

−1L⊤Kuu

)
W⊤

b

The third line immediately follows from an application of the Woodbury ma-

trix identity to (σ2K−1
uu +W⊤

a Wa)
−1. Following Pleiss et al. (2018a), we may
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compute two root decompositions of the form BB⊤ = Kuu and DD⊤ ≈

(I + σ−2L⊤KuuL)
−1 to speed up predictive variance computation, as this yields

efficient diagonal computation:

Sb|D = Wb

(
BB⊤ −BB⊤LDD⊤L⊤BB⊤)W⊤

b .

As we noted in the main text, at time t + 1, Qt can be updated with a new ob-

servation in constant time via a Sherman-Morrison update, and (W⊤
a ya)t+1 =

(W⊤
a ya)t +W⊤

b yb.

A.1.3 Conditioning on New Observations

Updating the Marginal Likelihood For fixed n, the Woodbury version

of the log likelihood in WISKI is constant in n after an initial O(n) precom-

putation of W⊤
a Wa, as the only terms that ever get updated are the scalar σ2

and the m × m matrix K−1
uu ; this is in and of itself an advance over the com-

putation speeds of other Gaussian process models, including SKI (Wilson &

Nickisch, 2015).

Updating W⊤
a Wa. To update W⊤

a Wa as we see new data points, we follow

the general strategy of Gill et al. (1974) by performing rank-one updates to

root decompositions:

Ã = A+ zz⊤ = L(I + pp⊤)L⊤, p = L−⊤z,

= LBB⊤L⊤ = L̃L̃⊤, BB⊤ = I + pp⊤,
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where L̃ = LB. In our setting, the update is given by

(W⊤
a Wa)t+1 = (W⊤

a Wa)t +W⊤
b Wb.

For full generality, we will assume q new points come at once, making Wb ∈

Rq×p. Recall that JJ⊤ = (W⊤
a Wa)

+, let p = Jt
⊤W⊤

b , which is the product

of a r × p matrix and a p × q matrix, which costs O(prq). To compute the

decomposition BB⊤ = Ir + pp⊤ in a numerically stable fashion, we compute

the SVD of p = USV ⊤ and use it to update the root decomposition:

Ir + pp⊤ = Ir + USV ⊤V SU⊤

= Udiag((S2
ii + 1);111r−q)U

⊤

= Udiag(
√

S2
ii + 1,111r−q)diag(

√
S2
ii + 1,111r−q)U

⊤.

The SVD of this matrix costs O(q2r), assuming q < r (q = 1 for most ap-

plications). The inner root is B = Udiag(
√
S2
ii + 1,111r−q), and a final ma-

trix multiplication costing O(pr2) obtains the expression for the updated root

Lt+1 = LtB. The updated inverse root is obtained similarly by

Jt+1 = JtUdiag(1./
√
S2
ii + 1,111r−q)

The overall computation cost is then O(prq + q2r + pr2).
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A.1.4 Online SKI and Deep Kernel Learning

When combining deep kernel learning (DKL) and SKI, the interpolation weight

vectors wi = w(xi, Z) become wi = w(h(xi;ϕ), Z
′), where h : Rd → Rd′ is

a feature map parameterized by ϕ and Z ′ ∈ Rp×d′. One implication of this

change is that if the parameters of h change, then the interpolation weights

must change as well. In the batch setting, the features and associated inter-

polation weights can be recomputed after every optimization iteration, since

the cost of doing so is negligible compared to the cost of computing the MLL.

The online setting does not admit the recomputation of past features and in-

terpolation weights, because doing so would require O(n) work. Hence at

any time t we must consider the previous features and interpolation weights

(h1,w1), . . . , (ht−1,wt−1) to be fixed. As a result, when computing the gradient

of the MLL w.r.t. ϕ, we need only consider the terms that depend on wt.

Claim:

∇wt log p(yt|x1:t, θ) = ∇wt

[
1

2σ2

(
y⊤
t WtMt−1W

⊤
t yt −

1

1 + v⊤
t wt

(
v⊤
t W

⊤
t yt

)2)
− 1

2
log(1 + vtwt)

]
, (A.5)

where

wt = w(h(xt;ϕ), Z
′), vt = Mt−1wt.
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Proof:

log p(yt|x1:t, θ) = −
1

2σ2
(yty

⊤
t − y⊤

t WtMtW
⊤
t yt)

− 1

2

(
log |Kuu| − log |Mt|+ (n−m) log σ2

)
− t

2
log 2π.

Recalling Mt := (K−1
uu + W⊤

t Wt)
−1 = (K−1

uu + W⊤
t−1Wt−1 + wtw

⊤
t )

−1, by the

Sherman-Morrison identity we have

Mt = Mt−1 −
1

1 + v⊤
t wt

vtv
⊤
t . (A.6)

Since Mt−1 is constant w.r.t. wt, we can substitute Eq. (A.6) into the MLL

and differentiate w.r.t. wt to obtain

∇wt log p(yt|x1:t, θ) = ∇wt

1

2σ2
y⊤
t Wt(Mt−1 −

1

1 + v⊤
t wt

vtv
⊤
t )W

⊤
t yt

+
1

2
log |Mt−1 −

1

1 + v⊤
t wt

vtv
⊤
t |.

The quadratic term straightforwardly simplifies to the first two terms in Eq.

(A.5). The final term results from an application of the matrix-determinant
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identity, once again dropping any terms with no dependence on wt,

log |Mt−1 −
1

1 + v⊤w
vv⊤| = log |Mt−1| − log

(
1 +

1

1 + v⊤w
v⊤M−1

t−1v

)
,

= log |Mt−1| − log

(
1 +

1

1 + v⊤w
v⊤w

)
,

= log |Mt−1| − log
(
1 + v⊤w

)
. ■

A.1.5 Heteroscedastic Fixed Gaussian Noise Likelihoods and Dirich-

let Classification

For a fixed noise term, the Woodbury identity still holds and we can still per-

form the updates in constant time. For fixed Gaussian noise, the term training

covariance becomes

Kaa ≈ KSKI = WaKuuW
⊤
a +D,

K−1
SKI = D−1 −D−1Wa(K

−1
uu +W⊤

a D−1Wa)
−1W⊤

a D−1.

Plugging the second line into Eq. 2.13 tells us immediately that we need to

store y⊤
a D

−1ya instead of y⊤
a ya, W

⊤
a D−1Wa instead of W⊤

a Wa, and W⊤
a D−1ya

instead of W⊤
a ya. The rest of the online algorithm proceeds in the same man-

ner as at each step, we update these caches with new vectors.

The heteroscedastic fixed noise regression approach naturally allows us to

perform GP classification as in Milios et al. (2018). Given a one-hot encoding

of the class probabilities, e.g. y = ec where c is the class number, they derive
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an approximate likelihood so that the transformed regression targets are

ỹi = logαi − σ̃2
i /2, σ̃2

i = log(1 + 1/αi),

where αi = Iyi=1 + αϵ, where αϵ is a tuning parameter. We use αϵ = 0.01

in our classification experiments. As there are C classes, we must model each

class regression target; Milios et al. (2018) use independent GPs to model each

class as we do. The likelihood at each data point over each class target is then

p(ỹi|f) = N (fi, σ̃
2
i ), which is simply a heteroscedastic fixed noise Gaussian like-

lihood. Posterior predictions are given by computing the argmax of the pos-

terior mean, while posterior class probabilities can be computed by sampling

over the posterior distribution and using a softmax (Equation 8 of Milios et al.

(2018)).

Challenges of Streaming Variational GP Inference

A.2.1 A Closer Look at O-SVGP

In this paper, we focus primarily on the online SVGP objective of Bui et al.

(2017a), ignoring for the moment their α-divergence objective that is used in

some of their models — which can itself be viewed as a type of generalized

variational inference (Knoblauch et al., 2019).

Recalling the online uncollapsed bound of Bui et al. (2017a) and adapting
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Figure A.1: (Left:) MSEs through the course of the dataset stream for up to 10, 000 data
points coming in batches of 500 data points for online SVGP. We varied the number of opti-
mization steps per batch, finding that at least 10 steps were required to achieve good perfor-
mance. The data points are drawn from a synthetic sine function corrupted by Gaussian noise.
(Right:) NLLs over the course of the dataset stream; again, we see that many optimization
steps are needed to decrease the NLL on the test set over the course of the stream.

their notation — copying directly from their appendix, the objective becomes

log p(yb|θ) ≥
∫ [

log
p (u′|θ′) q(u)

p (u|θ) q′(u′)p (yb|u)

]
q(u)du (A.7)

= −Eq(u)(log p (yb|u)) + KL (q(u)∥p (u|θ)) (A.8)

+KL (q(u′)∥q′(u′))−KL (q(u′)∥p (u′|θ′)) ,

where u′ is the old set of inducing function values, u is the new set of induc-

ing function values, q(·) is the variational posterior on a set of points, θ are

the current kernel hyperparameters to the GP, and θ′ are the kernel hyperpa-

rameters for the GP at the previous iteration. In Eq. A.7, the first two terms

are the standard SVI-GP objective (e.g from (Hensman et al., 2013c)), while

the second two terms add to the standard objective allowing SVI to be applied

to the streaming setting. Mini-batching can be achieved without knowing the
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Figure A.2: Here we ablate the number of O-SVGP gradient updates per timestep in the
context of UCI regression. Notably we see that the value we chose for our comparison in the
main text (k = 1) performs well in comparison to larger values of k. In contrast to the results
in Figure A.1, there is relatively little benefit to increasing the number of gradient update
steps per batch when the batch size is very small (in our case, 1).

number of data points a priori; however, this achievement comes at the ex-

pense of having to compute two new terms in the loss.

Since the bound in Eq. A.7 is uncollapsed, it must be optimized to a global

maximum at every timestep to ensure both the GP hyperparameters and

the variational parameters are at their optimal values. As noted in Bui et al.

(2017a), this optimization is extremely difficult in the streaming setting for

two main reasons. 1) Observations may arrive in a non-iid fashion and vio-

late the assumptions of SVI, and 2) each observation batch is seen once and

discarded, preventing multiple passes through the full dataset, as is standard

practice for SVI. Even in the batch setting, optimizing the SVI objective to a

global maximum is notoriously difficult due to the proliferation of local max-

ima. This property makes a fair timing comparison with our approach some-

what difficult in that multiple gradient steps per data point will necessarily be

slower than WISKI, which does not have any variational parameters to opti-
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(a) Skillcraft (b) Powerplant (c) Elevators (d) Protein

Figure A.3: Here we ablate the β hyperparameter in the GVI loss for O-SVGP on the UCI
datasets considered in this paper. While there is not a clear winner, we find that β = 1e-3
works well for all datasets.

mize, and thus can learn with fewer optimization steps per observation. We

implemented Eq A.7 in GPyTorch (Gardner et al., 2018a), but additionally

attempted to use the authors’ provided implementation of O-SVGP∗ finding

similar results — many gradient steps are required to reduce the loss. As a

demonstration, we varied the number of steps of optimization per batch in

Figure A.1 with a large batch size 300 (the same as Bui et al. (2017a)’s own

experiments) in the online regression setting on synthetic sinusoidal data, find-

ing that at least 10 optimization steps were needed to decrease the RMSE in a

reasonable manner even on this simpler problem.

To remedy the convergence issue (and to create a fair comparison with one

gradient step per batch of data), we down-weighted the KL divergence terms,

producing a generalized variational objective (equivalent to taking the likeli-
∗https://github.com/thangbui/streaming_sparse_gp
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hood to a power 1/β) (Knoblauch et al., 2019). Eq A.7 loss becomes:

log p(yb|θ) ≥ −Eq(u)(log p (yb|u)) + βKL (q(u)∥p (u|θ))

+ βKL (q(u′)∥q′(u′))− βKL (q(u′)∥p (u′|θ′)) , (A.9)

where all terms are as before except for β < 1. We found that β << 1 pro-

duces more reasonable results for a batch size of 1. Ablations for varying this

hyperparameter are shown in Figure A.3. Using generalized variational infer-

ence does not change the complexity of the streaming objective, which remains

O(Bp2 + p3); the O(p3) term stays the same due to the log determinant term

in the KL objective.

Finally, we vary the number of inducing points in the O-SVGP bound in

Figure A.4, finding that O-SVGP is quite sensitive to the number of inducing

points.

Experimental Details

A.3.1 Regression and Classification

Algorithm 5 summarizes online learning with WISKI. If an input projection is

not learned, then h(x;ϕ) can be taken to be the identity map, and the projec-

tion parameter update is consequently a no-op. In the rest of this section we

provide additional experimental results in the regression and classification set-

ting. In Figure 2.4 we report the RMSE for each of the UCI regression tasks.

Note that the RMSE is computed on the standardized labels. The qualitative
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Algorithm 5: Online Learning with WISKI
Input: Kernel function k, inducing grid Z, initial data D = (Xa,ya), GP

parameters θ, feature map parameters ϕ, learning rate η.
Initialize Kuu, L,W

⊤
a ya,y

⊤
a ya.

for t = n+ 1, n+ 2, . . . do
Receive new Xb.
Predict p̂(yb|Xb, D, θ, ϕ) (Eq. 2.14).
Observe new yb, compute Wb.
y⊤
a ya ← y⊤

a ya + y⊤
byb.

W⊤
a ya ← W⊤

a ya +W⊤
b yb

L← (LL+W⊤
b Wb)

1/2

D ← D ∪ (Xb,yb)
ϕ← ϕ− η∇ϕL(ϕ) (Eq. 2.18).
θ ← θ − η∇θL(θ) (Eq. 2.13).

end

behavior is identical to that of the NLL plots in the main text (Figure 2.4).

Figure A.5 is a visualization of a WISKI classifier on non-i.i.d. data. Figures

A.4 and A.3 report the results of our ablations on p and β, respectively. This

section provides all necessary implementation details to reproduce our results.

Data Preparation For all datasets, we scaled input data to lie in [−1, 1]d.

For regression datasets we standardized the targets to have zero mean and

unit variance. If the raw dataset did not have a train/test split, we randomly

selected 10% of the observations to form a test dataset. From the remainding

90% we removed an additional 5% of the observations for pretraining.

Hyperparameters We pretrained all models for Tbatch epochs, with learn-

ing rates ηbatch. If we learned a projection of the inputs, we used a lower learn-

ing rate for the projection parameters. While a small learning rate worked well
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Table A.1: Hyperparameters

Task m Tbatch ηbatch(θ) ηbatch(ϕ) ηonline(θ) ηonline(ϕ) β
Banana 256 200 5e-2 - 5e-3 - 1e-3

SVM Guide 1 256 200 5e-2 - 5e-3 - 1e-3
Skillcraft 256 200 5e-2 5e-3 5e-3 5e-4 1e-3

Powerplant 256 200 5e-2 5e-3 5e-3 5e-4 1e-3
Elevators 256 200 1e-2 1e-3 1e-3 1e-4 1e-3
Protein 256 200 1e-2 1e-3 1e-3 1e-4 1e-3
3DRoad 1600 800 1e-2 - 1e-3 - 1e-3

(a) WISKI, Skillcraft (b) O-SVGP, Skill-
craft

(c) WISKI, Power-
plant

(d) O-SVGP, Power-
plant

Figure A.4: Here we ablate the number of inducing points for both WISKI and O-SVGP.
We find that WISKI is not very sensitive to the number of inducing points, but always im-
proves if more inducing points are added. O-SVGP sometimes performs better with fewer in-
ducing points, a phenomenon we attribute to either 1) poor optimization of the GVI objective
or 2) overfitting due to the downweighted KL terms in the GVI objective. In theory adding
inducing points should only improve the performance of an SVGP. This observation highlights
the difficulties O-SVGP often encounters in practice.

for all tasks, for the best performance we used a higher learning rate for easier

tasks (Table A.1).
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p r NLL
256 128 8.2e+6± 9.8e+6
256 192 1.000± 0.010
256 256 1.007± 0.015
1024 256 2.9e+7± 9.2e+7
1024 512 1.050± 0.082
1024 768 0.995± 0.007
1024 1024 1.007± 0.008

Table A.2: Root decomposition rank (r) sensitivity comparison by NLL across both p = 256
and m = 1024 inducing points on skillcraft. Too small of a rank fails to converge; however,
once r is large enough (about p/2), the performance is unchanged.

A.3.2 Bayesian Optimization Experimental Details and Further Results

For the Bayesian optimization experiments, we considered noisy three dimen-

sional versions of the Bayesian optimization test functions available from BoTorch∗.

We sed the BoTorch implementation of the test functions with the qUCB acqui-

sition function with q = 3, randomly choosing five points to initialize with

and running 1500 BO steps, so that we end up with 4505 data points acquired

from the models. We then followed BoTorch standard optimization of the ac-

quisition functions by optimizing with LBFGS-B with 10 random restarts, 512

samples to initialize the optimization with, a batch limit of 5 and 200 itera-

tions of LBFGS-B. We fit the model to convergence at each iteration as model

fits are very important in BO using LBFGS-B for exact and WISKI while us-

ing Adam for OSVGP because the variational parameters are much higher di-

mensional so LBFGS-B is prohibitively slow. The timing results take into ac-

count the model re-fitting stage, the acquisition optimization stage, and the
∗https://botorch.org/api/test_functions.html
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(a) Test Accuracy - 70% (b) Test Accuracy - 70%

(c) Test Accuracy - 77% (d) Test Accuracy - 88%

Figure A.5: Online Gaussian Process Dirichlet classification with WISKI on observations
from the banana dataset arriving in non-i.i.d. fashion (shown). The WISKI classifier is up-
dated with a single gradient step after each individual observation.

expense of adding a new datapoint into the model. We used a single AWS

instance with eight Nvidia Tesla V100s for these experiments, running each

experiment four times, except for StyblinskiTang, which we ran three times

(as the exact GP ran out of memory during a bayes opt step on one of the

seeds). We measure time per iteration by adding both the model fitting time

and the acquisition function optimization time. While a single training step is

somewhat faster for O-SVGP than for WISKI, we found that it tended to take

longer to optimize acquisition functions in BO loops.

Results over time per iteration and maximum achieved value by time for the

rest of the test suite are shown in Figure A.6. Overall WISKI performs compa-

rably in terms of maximum achieved value to the exact GP reaches that value

in terms of quicker wallclock time. In Figure A.7, we show the maximum value

achieved by iteration for each problem, finding that the exact GPs typically
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converge to their optimum first, while WISKI converges afterwards with OS-

VGP slightly after that. In Figure A.8, we show the time per iteration for all

three methods, finding that WISKI is constant time throughout as is OSVGP,

while the exact approach scales broadly quadratically (as expected given that

the BoTorch default for sampling uses LOVE predictive variances and sam-

pling). Digging deeper into the results, we found that the speed difference be-

tween OSVGP and WISKI is attributable to the increased predictive variance

and sampling speed for OSVGP (O(p3) compared to O(p2)).

Levy Ackley StyblinskiTang Rastrigin Griewank Michalewicz
10.0 4.0 20.0 10.0 4.0 5.0

Table A.3: Noise scale used for WISKI Bayesian optimization experiments.

Figure A.6: Bayesian optimization results in terms of total optimization time. Through-
out, WISKI is generally the fastest, except on Griewank, while reaching similar optimization
performance to the exact GPs across the board. WISKI is somewhat better but significantly
faster than the other methods on Griewank, but with similar performance to O-SVGP on Sty-
blinskiTang and Michalewicz.
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Figure A.7: Bayesian optimization results in terms of iteration complexity for noisy 3D test
functions. Throughout, WISKI performs comparably to the exact GP.

A.3.3 Active Learning Experimental Details

For the active learning problem, we used a batch size of 6 for all models, with

a base kernel that was a scaled ARD Matern-0.5 kernel, and lengthscale pri-

ors of Gamma(3, 6) and outputscale priors of Gamma(2, 0.15). For both OS-

VGP and WISKI, we used a grid size of 900 (30 per dimension); for OSVGP,

we trained the inducing points, finding fixed inducing points did not reduce

the RMSE. For O-SVGP, we used β = 0.001 and a learning rate of 1e-4 with

the Adam optimizer, while for WISKI and the exact GPs, we used a learn-

ing rate of 0.1. Here, we re-fit the models until the training loss stopped de-

caying, analogous to the BO experiments. The dataset can be downloaded at

https://wjmaddox.github.io/assets/data/malaria_df.hdf5.
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Figure A.8: Bayesian optimization results in terms of time complexity for the noisy 3D test
functions. WISKI is the fastest method on the problems, while the exact GPs increase time
per iteration at least linearly (they use LOVE predictive variances internally). While O-SVGP
is constant time, it typically is somewhat slower due to larger constants with respect to n, p3

versus p2 for WISKI.
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Appendix B: OVC Supplementary Material

Appendix B is structured as follows:

• Appendix B.1 discusses broader impacts and limitations.

• Appendix B.2 discusses the background in more detail.

• Appendix B.3 discusses Newton’s method and training objectives for

the variational models, before giving more detail on the methodological

work, including implementation details.

• Appendix B.4 shows two more understanding experiments along with

ablation studies, with Appendix B.4.2 giving detailed experimental and

data descriptions.

Limitations and Societal Impacts

B.1.1 Limitations

From a practical perspective, we see several interrelated limitations:
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• In our software implementation, we currently support single-output func-

tions. This is partly because GPyTorch currently has limited support

for fantasization of multi-task Gaussian processes; see https://github.

com/cornellius-gp/gpytorch/pull/805.

• For non-Gaussian likelihoods, the approximation may break down for

long rollout time steps due to accumulating error from the Laplace ap-

proximation.

• Incorrect modelling and thus incorrect rollouts will tend to be even more

influential in high dimensional settings, as the kernels we use do not

tend to work particularly well in high dimensions (Eriksson et al., 2019).

• If the underlying data is non-stationary, then long range predictions may

suffer. For example, local models are superior on the rover problem in

Figure 2.10, even compared to global models with advanced acquisition

functions (e.g. Figure B.5c). This limitation is remedied somewhat by

the local modelling approaches we use (Eriksson et al., 2019; Wang et al.,

2020).

• Using many inducing points can worsen numerical conditioning, leading

to less stable multi-step fantasization, despite the theoretical advantages

of more inducing points (e.g., Bauer et al., 2016).
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B.1.2 Societal Impacts

We do not anticipate that our work will have negative societal impacts. To the

contrary, as we demonstrate in this paper, Bayesian optimization is naturally

suited to applications in the public interest, such as public health surveillance

(Andrade-Pacheco et al., 2020). These types of applications should help ben-

efit global populations by allowing more targeted interventions in the public

health setting. However, reliance solely on machine learning models, for exam-

ple, in quantitative finance settings (as our volatility model in Figure 2.3c is

designed for), could potentially lead to over-confidence and financial shocks as

has previously been the case (MacKenzie & Spears, 2014).

Further Background

In this section, we describe further related work on both variational inference

in the streaming setting as well as the use of sparse GPs in both BO and con-

trol before describing Newton’s iteration for Laplace approximations and train-

ing methods for exact and variational GPs.

B.2.1 Extended Related Work

Because our work explores three distinct applications, namely black-box op-

timization, active learning, and control, there was more noteworthy related

work than the space constraints of the main text would permit. Here we present

a more complete literature review.
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We do not focus on other approaches for streaming variational GP infer-

ence ranging from decoupled inducing points (Cheng & Boots, 2016; Kapoor

et al., 2020; Shi et al., 2020) to alternative variational constructions (Moreno-

Muñoz et al., 2019; 2020) to Kalman filtering based approaches (Huber, 2014;

2013) to deep linear model approaches (Pan et al., 2020; Titsias et al., 2019).

These approaches could potentially be folded into OVC; however, we leave ex-

ploration of these for related work.

We also focus solely on the variationally sparse GPs introducted by Titsias

(2009a) and Hensman et al. (2013b), rather than other approaches, which are

potentially amenable to being used within OVC. Of particular note, the clas-

sical variational approximations for non-Gaussian likelihoods such as the ap-

proaches proposed originally by Csató & Opper (2002) and later Opper & Ar-

chambeau (2009) seem particularly promising, as is the development of kernel

methods within the exponential family more generally (Canu & Smola, 2006).

From a software perspective, both GPFlowOpt (Knudde et al., 2017) and

its successor Trieste (https://github.com/secondmind-labs/trieste) seem

to support variational GPs for BO but we do not know of a comprehensive

benchmarking of their implementation. Implementing variational GPs for

most acquisitions in BoTorch (Balandat et al., 2020a) is entirely possible us-

ing GPyTorch, as we did, although it requires some engineering work and is

not natively supported at this time.

Recent work on molecular design has combined variational auto-encoders

(VAEs) trained to map high dimensional structured molecular representations
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to low-dimensional latent representations with SVGPs trained to predict a

molecular property of interest from the latent encoding (Gómez-Bombarelli

et al., 2018; Tripp et al., 2020), but they primarily use simple acquisition func-

tions.

In the control literature, sparse GPs are more popular, stemming from the

seminal works of Csató & Opper (2002) and Girard et al. (2002). Chowdhary

et al. (2014) directly apply the approach of Csató & Opper (2002) to optimal

control problems, while Ling et al. (2016) sparsify GPs for active learning and

planning. Groot et al. (2011), Boedecker et al. (2014), and Bĳl et al. (2016)

perform multiple time step look ahead via moment matching using sparse

GPs, while Pan et al. (2017) use a similar approach with random fourier fea-

tures. Deisenroth & Rasmussen (2011) use sparse GPs to speed up dynamics

models for robotics, while Sæmundsson et al. (2018) use sparse GPs for meta

reinforcement learning. Finally, Xu et al. (2014) use sparse GPs for robot lo-

calization tasks in control.

B.2.2 Laplace Approximations and Newton’s Iteration

Newton iteration iterates

bt+1 = (K−1 −H)−1(∇ log p(yb|bt)−Hbt)

= (K +KH−1/2B−1H−1/2K)(∇ log p(yb|bt)−Hbt),

B := (I −H1/2KH1/2),
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with H = ∇2
b log p(yb|b), i.e. the Hessian of the pointwise log-likelihood, until

||bt+1 − bt||22 < ϵ (i.e. until a stationary point is reached). The expensive com-

putational cost is the linear system involving B−1, since H is diagonal. In the

online case, we only apply Newton iteration to the latest batch of observations,

so that the time complexity is just O(q3). Please see Rasmussen & Williams

(Chapter 3 of 2008) for further detail.

Implementation wise, for all but the GPCV experiment in Figure 2.3c, we

manually implemented the gradient and Hessian terms as they are well known

due to being natural parameterizations of exponential families. For the pref-

erence learning experiment, we followed the gradient derivation in Chu &

Ghahramani (2005).

B.2.3 Training Mechanisms for Exact Gaussian Processes and Varia-

tional Gaussian Processes

Please see the more detailed summaries of Rasmussen & Williams (2008) for

training methods of exact Gaussian processes as well as the theses of Van der

Wilk (2019) and Matthews (2017) for training methods of sparse Gaussian pro-

cesses. In what follows, we assume solely a zero mean function and suppress

dependence on θ for the kernel matrices.

Log Marginal Likelihood for Exact GPs Training the GP’s hyper-

parameters, θ, proceeds via maximizing the marginal log-likelihood (MLL).
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The MLL is given by

log p(ya|Xa, θ) =−
1

2
y⊤
a (Kaa + σ2I)−1ya −

1

2
log |Kaa + σ2I| − n

2
log 2π, (B.1)

over the training set, D = (Xa,ya).

Collapsed Evidence Lower Bound for SGPR Sparse Gaussian process

regression (SGPR) begins by approximating the kernel with a lower rank ver-

sion. The training data covariance, Kaa, is replaced by the Nyström approxi-

mation Kaa ≈ Qaa := KauK
−1
uuKua, where Kuu is the kernel evaluated on the

inducing point locations, Z. SGPR learns the locations of the inducing points

and the kernel hyperparmeters through a ’collapsed’ form of the evidence

lower bound (ELBO), yielding a variational adaptation of older Nyström or

projected process approximations (Rasmussen & Williams, 2008, Chapter 7).

The ELBO is called “collapsed” because the Gaussian likelihood allows the

parameters of the variational distribution to be analytically optimized and

integrated out (collapsed), yielding a bound that depends only on the inducing

point locations and the kernel hyperparameters (Titsias, 2009a). The SGPR

bound is as follows (see Titsias (2008) for the full derivation):

log p(ya|θ) ≥ log p(ya|0, σ2I +Qaa)−
1

2σ2
trace(Kaa −Qaa). (B.2)

We can apply standard gradient based training to both the kernel hypers θ as

well as the inducing locations Z. Jankowiak et al. (2020b) derive a variational
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version of this bound which enables sub-sampling across data points; we leave

training with that bound for future work.

Evidence Lower Bound for SVGP The advance of Hensman et al. (2013b)

is that they do not compute the optimal variational parameters at each time

step proposing the sparse variational GP (SVGP). Their derivation, see Hens-

man et al. (2013b; 2015) for a full derivation, yields an ’uncollapsed’ ELBO

(so named due to its explicit dependence on the variational parameters),

log p(ya|θ) ≥ Eq(a)[log p(ya|a)]−KL(q(u)||p(u)), (B.3)

where q(a) =
∫
p(a|u)ϕ(u)du.∗ The GP posterior p(u|D) is replaced with a

parametric variational distribution, ϕ(u) = N (mu, Su). q(a) can be determined

via Gaussian marginalization from ϕ(u). and is q(a) = N (KauK
−1
uumu, Kaa −

KauK
−1
uu(Kuu − Su)K

−1
uuKua). Mini-batching is possible because the first term

in Eq. B.3 decomposes additively over each of the n data points since each

(ya)i is conditionally independent given u. Mini-batching enables the use of

stochastic optimization techniques, reducing the per iteration cost to be con-

stant w.r.t. n, the number of observations.

Bui et al. (2017a) introduce a streaming version of the ELBO that involves

two further terms; the method is called O-SVGP. Their primary model, O-

SGPR (called the “collapsed bound” of a streaming sparse GP in that paper)

is trained through a variant of their ELBO bound that integrates out the vari-
∗Note that q(u) = ϕ(u).
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ational parameters. We describe this collapsed bound in more detail in Ap-

pendix B.3.4.

Predictive Log Likelihood for SVGP We close this section by quickly

describing the predictive log likelihood (PLL) method of Jankowiak et al.

(2020b), which is motivated by attempting to improve the calibration of SVGP

models trained via the ELBO. The key advance in Jankowiak et al. (2020b) is

that they consider the expectation over both the data and the response, rather

than simply the expectation over the response in the variational distribution,

producing an objective that becomes:

ℓppgpr(θ, Z) = Ep(x,y)[log p(y|x, θ)]− βKL(q(u)||p(u))

≈ 1

n

n∑
i=1

log
{
Eq(f(xi))[p(yi|f(xi), θ)]

}
− βKL(q(u)||p(u)).

We consider this optimization objective for several of the larger-scale problems

here.

Further Methodological Details

In this Appendix, we begin by presenting our approach, OVC, as a general-

ization of exact Gaussian conditioning for SGPR (B.3.1) before describing an

alternative interpretation of Bui et al. (2017a) that is equivalent to our ap-

proach in B.3.2. Then, in Appendix B.3.3, we describe the practical implemen-

tation of OVC. In B.3.4, we describe a flaw of the O-SGPR bound for small
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batch sizes. Finally, in B.3.5, we give an extended description of look-ahead

Thompson sampling (LTS).

B.3.1 OVC Generalizes Efficient Batch SGPR Conditioning

In this section, we show that OVC can also be viewed as a generalization of

Gaussian conditioning for SGPR. Gaussian conditioning for SGPR is recov-

ered as a special case of OVC when θ′ = θ and Z ′ = Z. Under this assumption,

Eqns. (2.21) and (2.22) simplify as follows:

c = KuaΣ
−1
y y + c′, C = KuaΣ

−1
y Kau + C ′. (B.4)

Considering the predictive distribution given by Eq. 2.4 in the main text, as

we add new data points, (Xbatch,y), into the model, we need to update A =

(Kuu +C)−1, v = Ac, and R = (K−1
uu −A)1/2. For homoscedastic likelihoods the

A update is a fast low-rank update via the Woodbury matrix identity,

A =A′ − A′Kua(σ
2I +KauA

′Kua)
−1KauA

′. (B.5)

This produces efficient Sherman-Morrison updates to generate v (via addition

and matrix vector multiplication) and Woodbury based updates to update R,

the predictive covariance cache via low-rank updates (e.g. Proposition 2 of

Jiang et al. (2020a)).

Furthermore, these low rank updates can be used to produce updates to the

exact caches. These updates are simply exact Gaussian conditioning with an
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approximate kernel. That is, the SGPR caches are merely transformed exact

caches for any given set of data points. To demonstrate, we use a Nyström

approximation for the kernel throughout, e.g. Kab ≈ KauK
−1
uuKub, then after

applying Woodbury we can write the exact caches using A:

V V ⊤ = (Kaa + Σy)
−1 = Σ−1

y − Σ−1
y Kau(Kuu +KuaΣ

−1
y Kau)

−1KuaΣ
−1
y

= Σ−1
y − Σ−1

y KauAKuaΣ
−1
y

with a similar expression for the predictive mean cache as

v = (Kaa + Σy)
−1y = Σ−1

y y − Σ−1
y KauAc.

Next we take the caches computed on every training point and project them

into the space of inducing points by multiplying them by K−1
uuKua. It takes a

bit of algebra, but we can derive updated expressions for V V ⊤ and v in terms

of solely the new covariance matrix, Kvu and the new responses, Σ−1
y y. That

is, vSGPR = K−1
uuKuav and V V ⊤

SGPR = K−1
uuKuaV V ⊤KauK

−1
uu .

vSGPR = K−1
uuKua(Σ

−1
y y − Σ−1

y KauAKuaΣ
−1
y y)

= K−1
uuc−K−1

uuC(Kuu + C)−1c

= K−1
uu((Kuu + C)(Kuu + C)−1 − C(Kuu + C)−1)c

= (Kuu + C)−1c
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and similarly

V V ⊤
SGPR = K−1

uuKuaV V ⊤KauK
−1
uu

= K−1
uuKua(Σ

−1
y − Σ−1

y KauAKuaΣ
−1
y )KauK

−1
uu

= K−1
uuKuu −K−1

uuCACK−1
uu

= K−1
uu(Kuu(Kuu + C)−1CK−1

uu)

= (Kuu + C)−1CK−1
uu = (Kuu +KuuC

−1Kuu)
−1

= K−1
uu − (Kuu + C)−1.

Similarly one could follow this logic in reverse to go from SGPR caching to

caching for exact GP inference. We can also use the updates in Eq. B.4 to

update the exact GPs caches via first updating the SGPR caches.

To summarize, exact GP regression is just Gaussian conditioning, which can

be viewed as a special case of SGPR if one inducing point is placed at every

data point. SGPR in turn is again Gaussian conditioning through an approx-

imate kernel on projected features, which can be viewed as a special case of

O-SGPR if the inducing points and kernel hyperparameters are held fixed. Fi-

nally O-SGPR can be viewed as a special case of O-SVGP if the variational

parameters are constrained to be optimal.

B.3.2 Interpreting Bui et al. (2017a) as O-SGPR

The approach outlined in Section 2.7.1 can be verified to be equivalent to

streaming sparse GPs (e.g. the un-collapsed bound of Bui et al. (2017a)) me-
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chanically by verifying that the expressions for the ELBO are equivalent (up

to constants) and that the predictive mean and variance are exactly equiva-

lent. Although verifying the equivalence is simply a matter of manipulating

algebraic expressions, we have not yet justified the choice of ŷ and Σŷ. Bui

et al. (2017a) obtained their expressions by means of variational calculus, and

arrived at the correct result, but did not provide much in the way of intuition

for the nature of the optimal solution.

We now show how the choice of pseudo-targets ŷ and pseudo-likelihood co-

variance Σŷ has a clear interpretation that obviates any need to appeal to vari-

ational calculus except as a formal guarantee of optimality. Again, suppose

we are given a sparse variational GP with inducing points Z ′, kernel hyper-

parameters θ′ and a pre-computed optimal variational distribution ϕ(u′) =

N (mu′ , Su′), and then asked to find the likelihood and dataset of size p that

produced the model. Although the problem as stated is under-determined, if

we choose X = Z ′ and assume the likelihood is some Gaussian centered at f ,

then we can reverse Eqn. (2.20) (in the main text) to solve for y and Σy as

follows:

mu′ = K ′
u′u′(K ′

u′u′ +K ′
u′u′ΣyK

′
u′u′)−1K ′

u′u′Σ−1
y y,

⇒ y = (ΣyK
′−1
u′u′ + I)mu′ = ŷ (B.6)

Su′ = K ′
u′u′(K ′

u′u′ +K ′
u′u′ΣyK

′
u′u′)−1K ′

u′u′ ,

⇒ Σy = (S−1
u′ −K ′−1

u′u′)
−1 = Σŷ. (B.7)
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As a result, we can now provide new, intuitive interpretations of ŷ, Σŷ and

ϕ(u). In simple terms, the streaming sparse GP (i.e. O-SGPR) of Bui et al.

(2017a) is equivalent to a sequence of SGPR models, where instead of train-

ing on all previously observed data through the original likelihood at each

timestep, each model trains only on the combination of the current batch of

data (Xbatch,y), and the pseudo-data (Z ′, ŷ) through a pseudo-likelihood with

covariance Σ = blkdiag(Σŷ,Σy). The pseudo-data and pseudo-likelihood to-

gether represent all the past data and models. Furthermore, (Z ′, ŷ) and Σŷ

are the unique size-p dataset with X = Z ′ and f -centered Gaussian likelihood

that could have produced ϕ(u′), given Z ′ and θ′. In other words we can think

of the tuple (θ′, Z ′, ŷ,Σŷ) as a compressed representation of the sparse GP it

defines.

B.3.3 Practical Implementation

Implementation wise and to reduce our engineering overhead, we focused on

computing ŷ and Σŷ in a numerically stable manner. We start with the pseudo-

covariance term, which can be simplified as

Σŷ = I + Su′(K ′
u′u′ − Su′)−1Su′ .
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After some more algebra, we can rewrite the pseudo-observations that depend

on the inducing points,

ŷ = ΣŷS
−1
u′ mu′ =

(
I + Su′(K ′

u′u′ − Su′)−1Su′
)
S−1
u′ mu′

= S−1
u′ mu′ + Su′(K ′

u′u′ − Su′)−1mu′ (B.8)

For numerical stability, we substitutes inverses of matrix subtractions with

squared systems, i.e.

(K − S)−1 =
(
(K − S)−1(K − S)−⊤) (K − S)⊤,

dropping subscripts. While there is still a matrix subtraction here, squaring

the system improves the numerical stability of the systems, as we are forcing

all of the eigenvalues of the systems to be non-negative.

In practice however, we use “whitening” of the variational distribution as

introduced by (Matthews, 2017). We instead optimize m̄u = K
−1/2
uu mu and

S̄u = K
−1/2
uu SuK

−1/2
uu . We can rewrite Σŷ using the whitened variational covari-

ance matrix S̄u′ producing, Σŷ = K
′1/2
u′u′(S̄u′ + S̄u′(I − S̄u′)−1S̄u′)K

′1/2
u′u′ . Again,

we square the second term to enhance stability, although it already has a sym-

metric form; that is, we compute

Σŷ = K
′−1/2
u′u′ (S̄u′ + S̄u′(I − S̄u′)−1(I − S̄u′)−⊤(I − S̄u′)⊤S̄u′)K

′−1/2
u′u′ .
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Similarly, Eq. B.7 simplifies to become

ŷ = K
′1/2
u′u′(I − S̃u′)−1m̄u′ = K

′1/2
u′u′(I − S̃u′)−1(I − S̄u′)−⊤(I − S̄u′)⊤m̄u′ .

From an engineering point of view, as we condition into an exact GP for

most of our applications, we are able to use the pseudo-likelihood covariance

alongside the cache of the pseudo-data covariance, caching a root decompo-

sition of the matrix (Kjoint + blkdiag(Σŷ,Σy))
−1 via low-rank updates to a

pre-existing root decomposition of Kuu + Σŷ (and its inverse), where Kjoint =

kθ(cat(Z,Xb), cat(Z,Xb)) (Pleiss et al., 2018b; Jiang et al., 2020a). On per-

forming several steps of conditioning (e.g. rollouts), we then use exact GP con-

ditioning via low rank updates as implemented in GPyTorch (which uses the

strategy of Jiang et al. (2020a) internally) after the first step.

B.3.4 Incremental O-SGPR Tends to Underfit the Data

In this section we discuss a pathology of the ELBO derived in Bui et al. (2017a)

that occurs when O-SGPR is updated on very small batches on new data (e.g.

1 new observation). Tellingly, Bui et al. (2017a) only considered tasks with

large batch sizes (around 100 new observations per batch in each task).

155



Bui et al. (2017a) propose a “collapsed” evidence lower bound to train their

O-SGPR model for each new batch of data. It is written as:

ℓOSGPR(θ,u) = − logN (cat(ŷ,y)|0, Qjoint − blkdiag(Σŷ,Σy))

+
1

2
(trace1(θ,u) + trace2(θ,u)) + constants, (B.9)

trace1(θ,u) = σ−2Tr(Kaa −KauK
−1
uuKua),

trace2(θ,u) = Tr((S−1
u′ −K ′−1

u′u′)(Ku′u′ −Ku′uK
−1
uuKuu′)),

where Qjoint = [Kuu, Kua]
⊤K−1

uu [Kuu, Kua], and constants is composed of terms

that do not depend on θ or Z. In a close parallel to the observations of Titsias

(2009a) (e.g. Eq. B.2), we see that the O-SGPR objective is composed of a

likelihood term and a trace term (written as trace1 + trace2), the latter act-

ing as a regularizer (Titsias, 2009a; Bauer et al., 2016). The first part of the

trace term, trace1, has the same interpretation as the trace term in the batch

setting — it is minimized when the Nÿstrom approximation of the kernel ma-

trix at Xb is exact (i.e. Kaa = KauK
−1
uuKua). The second trace term, trace2,

is minimized when Z ′ = Z, so it regularizes the new inducing point locations

to be close to the old locations. If the batch size q is much less than the num-

ber of inducing points p then the trace term is dominated by trace2, which is

after all a sum over p terms, compared to trace1 which is a sum over q terms.

Since the loss encourages the model to keep Z ′ close to Z to minimize trace2,

the model can simply increase σ2 to also decrease trace1 to explain new ob-

servations by under-fitting. An analogous problem for small batch sizes was
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Figure B.1: O-SGPR (p = 16) learning on i.i.d observations without re-sampling the in-
ducing points from a noisy sine function. Top row: As the number of data points increases
for a batch size of 1, the model progressively underfits due to excess regularization. The trace
term is entirely dominated by trace2. Bottom row: For a larger batch size (q = 16), there is
no under-fitting and trace1 takes up more of the overall trace term.

described in the Appendix of Stanton et al. (2021) for the un-collapsed bound

(e.g. the training procedure of an O-SVGP model) of Bui et al. (2017a), neces-

sitating Stanton et al. (2021) to propose a variant that down-weights the prior

terms in the objective. The cost of down-weighting is an increased tendency

towards over-fitting as well as an additional hyper-parameter, both of which

were observed by Stanton et al. (2021).

In Figure B.1, we empirically demonstrate the pathology of the O-SGPR

bound with small batch sizes in the i.i.d. setting. In the top row, we add q =

1 data point at a time while continuing to re-train. Although the O-SGPR

model originally fits the data well at T = 256, it progressively begins under-

fitting, which becomes more and more noticeable, especially by T = 1024. By

comparison, a larger batch size, q = p = 16, prevents any under-fitting from

occurring. In the far right panel, we see the two terms in the trace component;

in the small batch setting, the inducing trace term dominates the total trace.
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Algorithm 6: LTS with SVGP
Input: Observed data D = (X,y); SVGP model,M; candidate set
generation utility, Cgen(), rollout steps, T, parallel path parameter l, top
k parameter, q batch size.

1. Generate initial candidate set, X1 = Cgen(). 2. Compute posterior over
candidate set, drawing a posterior sample: y1 ∼ p(y|X1,M). 3. Sort y1
and keep top l samples ỹ0 and corresponding candidates, X̃1. 4. Generate
M1 ← OVC(M, (X̃i, ỹi).unsqueeze(-1)) via Algorithm 1. M1 is a batch
of l models each conditioned on a single data point. for t in 2:T do

5. Generate initial candidate set, Xt = Cgen(). 6. Compute posterior
over candidate set, drawing a posterior sample: yt ∼ p(y|Xt,Mt−1). 7.
Sort yt and keep top l samples ỹt and corresponding candidates, X̃t. 8.
GenerateMt ← OVC(Mt−1, (X̃t, ỹt)) using Algorithm 2.

9. GenerateMend ← OVC(M, (X̃i, ỹi)
T
i=1) using Algorithm 2. Generate

final candidate set, Xend = Cgen(). 10. Compute posterior over candidate
set, drawing a posterior sample: yend ∼ p(y|Xend,M). 11. Sort yend and
return top q corresponding candidates, X̄end. return Candidates for
evaluation X̄end.

The effect is mediated by a larger batch size, as shown in the bottom right

panel.

Informally, if the number of old inducing points is much greater than the

number of new observations, then O-SGPR will focus on replicating the old

variational distribution. Note that either aggregating multiple batches for each

update or conditioning O-SGPR into an exact GP remedies the issue.

B.3.5 Look-Ahead Thompson Sampling

Thompson sampling in continuous domains: in the context of black-box

optimization, the action space is simply the input space, X , since we are de-

ciding which input x ∈ X we will query next. Thompson sampling draws the
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next query point from the Bayes-optimal distribution over the possible choices,

x∗ ∼ pTS(x), where

pTS(x) ∝
∫

1{f(x) = sup
x′∈X

f(x′)}p(f |D)df. (B.10)

When X is a continuous domain, as is usually the case, we replace the supx′∈X

with a maxx′∈Xcand
, where Xcand ⊂ X . As the name suggests, rather than at-

tempting to evaluate the integral in Eq. (B.10), Thompson sampling instead

draws samples fi ∼ p(f |D), i ∈ {1, . . . , q} and take x∗
i = argmaxx′∈Xcand

fi(x
′).

The look-ahead case: If we were able to evaluate each fi on every point

x ∈ X and compute supx′∈X fi(x
′) exactly, there would be no benefit to mul-

tiple rounds of Thompson sampling. However, as we noted above, typically

we rely on a max over a discrete set Xcand, typically obtained from a (quasi-

)Monte Carlo method (e.g. Sobol sequences) to cover X , and the number of

candidate points is restricted by compute and memory. Therefore we can

do multiple rounds of Thompson sampling to try to refine the estimate of

x∗
i by evaluating argmaxx′∈Xj

fi(x
′) for a sequence of candidate sets Xj, j ∈

{0, . . . , h}. The key challenge with GPs is to ensure that fi is consistent across

the sequence of candidate sets, which we accomplish by drawing fi(x
′) ∼

p(f |D ∪ {(x∗
j−1, fi(x

∗
j−1))} for x′ ∈ Xj and j > 0. The result is again x∗

i =

maxx′∈Xcand
fi(x

′), but now Xcand =
⋃

j Xj.

In Algorithm 6, we describe how OVC is used within LTSs as an example of

its usecase. Here, of course, we are only performing Thompson sampling over
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a discrete set of values and so do not end up needing to use gradient based

acquisitions. Specifically, we continue using OVC (or really after T = 1, ex-

act GP conditioning with low-rank updates (Jiang et al., 2020a) as the GP is

now exact), to condition our model on each step’s fantasy responses ỹt and the

observations X̃batch.

Further Experimental Details and Results

B.4.1 Updating O-SGPR Inducing Points

We illustrate the efficacy of this choice of new inducing points in Figure B.2

using the same time series data as in Stanton et al. (2021) originally from

https://raw.githubusercontent.com/trungngv/cogp/master/data/fx/

fx2007-processed.csv (that repo uses BSD License). Re-sampling the old

inducing points is shown in the top row, and tends to first perform well, but

then begins to catastrophically forget by t = 40 and dramatically so by t = 60,

as all of the inducing points have moved over to the right. By comparison, our

approach of iteratively running a pivoted cholesky on the current inducing

points and the new data point, prevents catastrophic forgetting, while also en-

abling the model to learn on the new data stream.

In Figure B.3, we illustrate the effect of Laplace approximations during a

rollout following the streaming classification example of Bui et al. (2017a) as

we use OVC. We first trained a SVGP model with 25 inducing points on 100

data points, as shown in the first rows, then performed three steps of rollouts

each with 100 data points each as we observe progressively more and more of
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Figure B.2: Online SVGP modelling a time series Top row: inducing points are updated
by replacing an inducing point with the new location as in Bui et al. (2017a). Bottom row:
Inducing points are updated by re-running a pivoted cholesky on both the new data point and
the current inducing points. The recursive refitting procedure of the pivoted cholesky place-
ment remedies the catastrophic overfitting and forgetting of merely resampling the inducing
points.

the dataset. In the middle row, we show the predicted probability on a held-

out test set; as we observe more data, the predictions become more and more

confident throughout the entire region, and are un-confident in the regions

where we have not observed any data. This effect is similarly observed by the

predictive variances, which are high in regions where we have not seen any

data, but decay as we observe each region successively. Data from https://

github.com/thangbui/streaming_sparse_gp/tree/master/data (Apache

2.0 License).

161

https://github.com/thangbui/streaming_sparse_gp/tree/master/data
https://github.com/thangbui/streaming_sparse_gp/tree/master/data


2 0 2
x

2

1

0

1

2

y
T = 100

2 0 2
x

T = 200

2 0 2
x

T = 300

2 0 2
x

T = 400

2 0 2
x

2

1

0

1

2

y

2 0 2
x

2 0 2
x

2 0 2
x

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y

2 0 2
x

2

1

0

1

2

y

2 0 2
x

2 0 2
x

2 0 2
x

0.00

0.75

1.50

2.25

3.00

V
ar

ia
nc

e

Figure B.3: Top row: Data from the bananas dataset arriving in a non-i.i.d fashion in four
sucessive batches. Middle row: Predictive probabilities of a SVGP with OVC to rollout con-
ditional on these batches. Even in the non-Gaussian setting, OVC is able to adapt to new
data without catastrophic forgetting. Bottom row: Variance of the latent function during
the OVC rollout. The variances decay as we observe new data.

B.4.2 Experimental and Data Details

Unless otherwise specified, all data is simulated. The code primarily relies

on PyTorch (Paszke et al., 2019a) (MIT License), BoTorch (Balandat et al.,

2020a) (MIT License), GPyTorch (Gardner et al., 2018b) (MIT License). All
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GPs (variational and exact) used a constant mean, scaled Matern-5/2 ker-

nels with ARD with lengthscale priors of Gamma(3, 6) and outputscale priors of

Gamma(2, 0.15), which are the current BoTorch defaults for single task GPs. All

variational GPs used GPyTorch’s whitened variational strategy. Unless other-

wise specified, we normalized all inputs to [0, 1]d and standardized outputs to

have zero mean and standard deviation one during the model fitting stage. We

trained all models to convergence with an exponential moving average stop-

ping rule using Adam with a learning rate of 0.1. We re-fit each model inde-

pendently at each iteration. When plotting the median, we plot the 95% con-

fidence interval around it following https://www-users.york.ac.uk/~mb55/

intro/cicent.htm. Unless otherwise specified, all acquisitions were optimized

with multi-start L-BFGS-B with 10 random restarts and 512 samples for ini-

tialization for up to 200 iterations with a batch limit of 5 following Balandat

et al. (2020a).

Understanding Experiments

All understanding experiments, e.g. Figures 2.3, B.1, B.2, B.3 were run on

CPUs with Intel i5 processors. Computational costs were negligible to the cost

of writing this paper.

Figure 2.3: We fit each non-Gaussian model using the ELBO. The Gaus-

sian function is f(x) = sin(2|x| + x2/2) with n = 100 and ntest = 25. For the

GPCV model, we follow the model definition of Wilson & Ghahramani (2010)

and parameterize the scale of the Gaussian as a linear softplus transform, but
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we implemented a variational version, rather than the Laplace or MCMC im-

plementations that are considered in the original paper. The data itself is a

forward simulation of the well known SABR volatility model (Hagan et al.,

2002) with parameters F0 = 10, V0 = 0.2, µ = 0.2, α = 1.5, β = 0.9, ρ = −0.2.

We model the scaled log returns and plot volatility rather than the latent func-

tion. We use n = 250 and ntest = 150, so that T = 400; we standardize the

inputs. Here, to perform Laplace approximations, we used PyTorch’s higher

order AD software as deriving the gradients and Hessians would be tedious.

Knowledge Gradient on Branin: We used the Branin test function as

implemented in BoTorch (Balandat et al., 2020a) with n = 50 and 25 inducing

points, 8 fantasies per data point, 250 candidate points and a grid of size 15 ×

15. These were run on a single Nvidia Titan 24GB RTX. Computation took

several minutes.

Incremental Learning on Protein: We followed the experimental pro-

tocol of Stanton et al. (2021) but substituted in Matern-5/2 kernels with ARD

instead of linear projections. The data comes from Dua & Graff (2017). The

experiment is run over 10 random seeds and we show the mean and two stan-

dard deviations of the mean. Computation took several hours per trial.

Batch Knowledge Gradient Experiments

qEI and qNEI optimization used quasi Monte Carlo (QMC) integration with

256 random samples, while qKG optimization used QMC integration with 64

random samples (BoTorch defaults).
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Hartmann6: Data comes from the Hartmann6 test function from https:

//github.com/pytorch/botorch/blob/master/botorch/test_functions/

synthetic.py and the experiment is inspired by https://botorch.org/tutorials/

closed_loop_botorch_only. These were run on CPUs on an internal cluster.

Computation took several hours per trial. We used and 1000 randomly sam-

pled candidate points to estimate the knowledge gradient.

Laser: Comparison scripts are from https://github.com/ermongroup/

bayes-opt/. No license was provided. These were run on CPUs on an inter-

nal cluster. Computation took several hours per trial.

Preference Learning: Function is inspired by https://botorch.org/

tutorials/preference_bo; we used noise of σ = 0.1 to make the function

more difficult. The Laplace implementation comes from https://github.

com/pytorch/botorch/blob/master/botorch/models/pairwise_gp.py.

These were run on CPUs on an internal cluster. Computation took several

hours per trial. qNEI optimization used QMC integration with 128 random

samples, while qKG optimization used QMC integration with 64 random sam-

ples. Here, we used 3 random restarts and 128 raw samples for acquisition

function optimization.

Active Learning Experiments

Malaria: Data is originally from Weiss et al. (2019) under a creative com-

mons 3 license, https://malariaatlas.org/malaria-burden-data-download/

#FAQ. From the reference, the data is modelling predictions off of survey data
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and thus not human responses. For all models, we used Matern-1/2 kernels

due to the lower smoothness and fixed noise models as variance is known. Com-

parison is to WISKI (Stanton et al., 2021), with their code https://github.

com/wjmaddox/online_gp which uses Apache License 2.0. These were run on

a combination of Nvidia 32GB V100s and 48GB RTXes on an internal cluster.

Here, we used 4 random restarts with 64 base samples to optimize the aquisi-

tion. Computation took several hours per trial.

Hotspot Modelling: Simulated data and comparison data is from https:

//github.com/disarm-platform/adaptive_sampling_simulation_r_functions.

No license was provided for either. Our trials were run on AMD 32GB Mi50

GPUs on an internal cluster. Computation took close to eight hours per trial.

We used tempering with β = 0.1 (Jankowiak et al., 2020b) and Matern-3/2

kernels for these models following the kriging setup in Andrade-Pacheco et al.

(2020). Overall, we used 16 inner and outer samples for the entropy search

objective, enumerating over all remaining test points to select a new point to

query.

We note that the model fitting procedure of Andrade-Pacheco et al. (2020)

seems to possibly encourage test-set leakage as they seemingly use a random

forest trained on all of the data, rather than on simply the first n observations.

See the third from final paragraph in their description of spatial methods in

that section. We do not follow this as we do not use any random forests.

166

https://github.com/wjmaddox/online_gp
https://github.com/wjmaddox/online_gp
https://github.com/disarm-platform/adaptive_sampling_simulation_r_functions
https://github.com/disarm-platform/adaptive_sampling_simulation_r_functions


TurBO Experiments

Rover: We use the opensource Turbo implementation from https://botorch.

org/tutorials/turbo_1 and the rover function setup code from https://

github.com/zi-w/Ensemble-Bayesian-Optimization. Both are licensed

under the MIT License. These were run on Nvidia 24GB RTXes on an eight

GPU server. We repeated experiments 24 times. See the wall-clock time pan-

els for estimates of computational budgets (about an hour). As not all trials

reached exactly 40, 000 iterations (due to cholesky decomposition errors, mem-

ory errors, and TurBO not restarting after 190 steps), we assume that the

maximum achieved value was the best evaluation out to 200 steps to mimic

the performance that one would see if using the method in practice. Early fail-

ures were only an issue for the exact GPs and then due to numerical instabil-

ity, actually inspiring Figure B.5a. As this truncation wreaked a bit of havoc

with our timings, we only report the first 150 step timings in the main text

(170 for Figure B.6).

We used 500 data points and the same model classes for the conditioning

experiment (Figure B.5a). Error bars are two standard deviations of the mean

over the 10 paths used.

For the global models experiment (Figure B.5c), we used a combination

strategy that first used half the batch with Thompson sampling (TS) to se-

lect the points and then used qGIBBON (Moss et al., 2021) to select the other

half of the batch by setting the TS half of the batch as pending points. Perfor-

mance using qGIBBON alone was about twice as slow and was slightly worse
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due to the lack of exploration that TS provides. This strategy also enforces

that qGIBBON’s implementation actually uses fantasization and OVC, which

would not natively have been the case without using the pending points. For

the timings, we report the first 106 steps over 8 seeds.

MuJoCo: We use the codebase of Wang et al. (2020) including their patched

TurBO implementation with an optimization loop. This codebase is avail-

able from https://github.com/facebookresearch/LaMCTS/tree/master/

LA-MCTS with a Creative Commons 4.0 License with the included, modified

TurBO implementation following a non-commercial license. The MuJoCo ex-

periments use mujoco-py (https://github.com/openai/mujoco-py, MIT Li-

cense) and an institutional license key for MuJoCo itself (Todorov et al., 2012).

These were run on a combination of Nvidia 32GB V100s and 48GB RTXes on

an internal cluster. We repeated these experiments over 10 trials and compu-

tation took close to 14 hours for hopper (where one trial failed to reach 4000

samples for all methods but exact LTS), and several hours for swimmer.

On hopper, we struggled with wide variation in model fits, so we changed

the regularization strategy on the base GP models to account for the high di-

mensional feature space. Inspired by Eriksson & Jankowiak (2021), we con-

tinued using ARD Matern-5/2 kernels but placed HalfCauchy(τ) priors on

the inverse lengthscales and then placed a HalfCauchy(1.0) prior on τ itself.

Rather than using MCMC as Eriksson & Jankowiak (2021) did, we used MAP

to estimate both the lengthscales and τ.
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B.4.3 Bayesian Optimization with the Knowledge Gradient
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Figure B.4: (a) Comparison to a broader suite of methods on Hartmann6, 1 constraint. (b)
Comparison includng BoTorch exact GPs and their acquisitions on the free electron laser
problem. Comparing to the results in Figure 3 of McIntire et al. (2016), these exact GPs
vastly outperform their implementation, presumably due to advances in acquisition function
optimization. (c) Hartmann6 test problem with count responses (Poisson likelihood). Only
approximate inference can be used here, and qKG vastly outperforms qNEI.

In Figure B.4, we present the results for a wider set of acquisition functions

using the one-shot knowledge gradient on three test functions. These results

complement Figure 2.8 and only include these additional methods. Overall,

qKG (with either an exact GP or a SVGP) generally performs best, followed

by qNEI and then qEI.

In Figure B.4a, we include results on the constrained Hartmann6 problem

with random baselines as well as exact and SVGPs with expected improve-

ment (EI). Exact and SVGPs with EI are signficantly outperformed by the

other, more advanced acquisitions, but do outperform a random baseline.

In Figure B.4b, we also show the results of exact GPs as well as an online

GP (OGP, Csató & Opper, 2002) with EI using the implementation of McIn-

tire et al. (2016). Interestingly, all of the exact GPs significantly outperform
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Table B.1: Best achieved values on Hartmann-6 for batch size, q = 3 for both NEI and KG
for exact and SVGPs.

Noise Level Acqf Method Best Value

0.1 NEI Exact 3.19 (0.05)
0.1 NEI SVGP 3.08 (0.06)
0.1 KG Exact 3.17 (0.03)
0.1 KG SVGP 3.13 (0.04)
0.5 NEI Exact 3.20 (0.03)
0.5 NEI SVGP 3.12 (0.06)
0.5 KG Exact 3.15 (0.03)
0.5 KG SVGP 3.21 (0.05)

their variational counterparts. This is quite surprising in some sense, as the

true simulator is a weighted OGP with fixed hyper-parameters, and this method

(WOGP + EI) performs much worse. Note that the random baseline makes no

progress.

Finally, in Figure B.4c, we display the results on constrained Hartmann-6

with Poisson observations, where each method outperforms random querying,

but as expected SVGP + qEI, performs worse than qNEI and qKG.

Batch Size and Noise Level Ablation: In Tables B.1 and B.2, we dis-

play the final optimization results after 150 function evaluations on the Hartmann-

6 test problem for varying levels of noise and for each acquisition. These re-

sults are over 20 trials and we display the mean maximum achieved value.

Overall, KG tends to outperform NEI at both low and noise levels, with

both exact and SVGP models performing very similarly overall with the SVGPs

getting a slight edge in the high noise setting. Furthermore, larger batch sizes

tend to perform slightly better as the mean maximum achieved tends to have
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lower variation. Finally, higher noise levels tend to be somewhat harder to op-

timize as expected.

As we add more Gaussian noise into the function, we might a priori expect

that qNEI should outperform qKG given the class of models. However, all

things being held equal, a model that is more robust to the observed noise

should tend to perform better, particularly if we are using more than just its

mean and variance. Thus, SVGP models, by virtue of having more parameters

to tune, tend to be more robust to the observed noise than the exact GPs.

Table B.2: Best achieved values on Hartmann-6 for batch size, q = 1 for both NEI and KG
for exact and SVGPs.

Noise Level Acqf Method Best Value

0.1 NEI Exact 3.14 (0.13)
0.1 NEI SVGP 3.10 (0.10)
0.1 KG Exact 3.20 (0.02)
0.1 KG SVGP 3.18 (0.03)
0.5 NEI Exact 3.10 (0.10)
0.5 NEI SVGP 3.10 (0.14)
0.5 KG Exact 3.12 (0.04)
0.5 KG SVGP 3.16 (0.05)

B.4.4 Ablations on Rover

Effects of LTS: To ablate the effects of rollouts and improved conditioning,

we consider several step rollouts on the rover function as shown in Figure B.5a.

We find that performance is similar across depths. However, the condition-

ing of the resulting training data covariance is vastly improved when using

OVC, as shown in Figure B.5b. Taking these two results together, we see that
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Figure B.5: (a) Conditioning of exact and OVC conditioning across LTS tree depths on
rover. (b) Performance of different rollout depths is similar, as the bigger gains are condition-
ing. (c) Time efficiency using global models. SVGPs are still a strong baseline. (d) Compari-
son with SGPR using pivoted cholesky initializaiton on rover. SGPR is competitive.

in most cases, a tree depth of 4 should be enough to gain the improvements

from rollouts without increasing the conditioning of the system too much.

Global models and SGPR: To further demonstrate time efficiency of

using OVC in the context of even global models, we perform large batch BO

with the recently introduced qGIBBON acquisition (a max value entropy search

variant) but using half the batch with TS to enforce fantasization over the

TS-acquired batch (Moss et al., 2021). This strategy is significantly slower

than TurBO; however, even in this setting using SVGPs is twice as fast, and

achieves a similar result to the exact model, as shown in Figure B.5c. Both

are orders of magnitude faster than Ensemble BO, which uses batch max value

entropy search and exact GPs with addtive kernels (Wang & Jegelka, 2017;

Wang et al., 2018). Ensemble BO takes at least several days of compute time

(Eriksson et al., 2019). Our result here compares very favorably to the (un-

timed) results using SVGPs as well as exact GPs with ARD kernels that Wang

et al. (2018) also compared to, as neither of those methods reached reward val-
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ues ≥ 1 on this problem, even after 35, 000 steps.
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Figure B.6: Inducing point ablation on rover (a,b) use Thompson sampling and (c,d) use
rollouts.

Number of Inducing Points and Training Loss: Finally, in Figure

B.6 we ablate between training SVGPs with either 250 or 500 inducing points

as well as the training loss, either the evidence lower bound (ELBO) or the

predictive log likelihood (PLL), (see Appendix B.2.3 for further descriptions)

on the d = 60 rover problem. We find that there is not a significant amount of

difference between any of the four approaches whether using the ELBO or the

PLL. In general, the PLL approaches are somewhat more quick to train (Fig-

ures B.6b and B.6b) in comparison to the ELBO models. They also tend to

slightly outperform the ELBO-trained SVGPs when using LTS (Figure B.6c)

in terms of function efficiency, but perform similarly for standard Thompson

sampling (Figure B.6a). We leave a detailed benchmarking of these methods

in the context of downstream tasks for future work.
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Appendix C: LaMBO Supplementary Material

In Appendix C.1 we outline the four evaluation tasks: Bigrams, logP + QED,

DRD3 docking + SA, and Stability + SASA. In Appendix C.2, we de-

scribe in detail the neural network architecture, the DKL GP implementation,

the denoising autoencoder implementation, the string kernel implementation,

and the hyperparameters used for our experiments. Finally, in Appendix C.3,

we present additional experimental results to supplement the figures in the

main text.

Evaluation Task Details

C.1.1 Bigrams Task

The bigrams task is a simple toy example of discrete sequence optimization.

We draw random strings from an alphabet V and count the occurrence of k

predetermined bigrams, which we use as proxy fitness targets. The task is to

maximize the counts of each bigram in the sequence, restricting the sequence
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length to 36 tokens including utility tokens (”[PAD]”, ”[CLS]”, ”[SEP]”, ”[UNK]”,

”[MASK]”). For our experiments we used the same amino acid vocabulary as

our protein task and chose 3 complementary bigrams, “AV”, “VC” and “CA”.

The initial sequences were sampled with lengths between 32 and 36 tokens We

ensured there were an equal number of positive examples (sequences with at

least one occurrence of one of the bigrams) as negative examples in the start-

ing pool.

C.1.2 logP + QED Task

The original ZINC logP optimization task, popularized in the BayesOpt com-

munity by Gómez-Bombarelli et al. (2018), is to optimize the octanol-water

partition coefficient of a small molecule. Molecules with high logP values are

hydrophobic and molecules with low values are hydrophilic. Hydrophobicity

can be desirable for absorption and solubility, for example in pharmaceuti-

cals. As a property that is easy to calculate, it has risen to prominence despite

being undesirable on its own. Very high logP can result in molecules with lim-

ited practical application, and moreover finding molecules with high logP re-

duces trivially to the problem of finding long hydrocarbon chains, as these

compounds are extremely hydrophobic relative to the size of the molecule.

The penalized logP objective adds auxiliary terms measuring synthetic acces-

sibility (Ertl & Schuffenhauer, 2009) and the number of cycles. Unfortunately

these terms do not fix the underlying problem, and so penalized logP is simi-

larly vulnerable to optimization hacking, as we discuss in Section C.3.2.
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Because logP in itself is a deeply flawed objective, both in its relevance to

real-world drug design and its ability to be hacked by optimizers, we also con-

sider a multi-objective optimization task that is closer in form to real design

problems. Instead of solely optimizing for logP, we jointly optimize for logP

and QED (Quantitative Estimate of Druglikeness), a composite metric that

captures many elements of druglikeness, with bioaavailability among the most

prominent Bickerton et al. (2012). Unfortunately QED has its own limita-

tions as an objective, since it is a simple parametric model trained on a small

dataset to emulate heuristics such as Lipinski’s Rule of Five (Lipinski et al.,

1997).

The shortcomings of objectives like logP and QED appear to be well-known

(Nigam et al., 2019; Coley et al., 2020; Fu et al., 2020; Tripp et al., 2021; Maus

et al., 2022), but superior alternatives have not yet been accepted by the re-

search community. For example, at the time of writing the only molecule gen-

eration benchmark in TorchDrug is maximization of QED and logP of ZINC-

like molecules.∗ Angermueller et al. (2020a) evaluated BBO algorithms on

a substantial number of in silico sequence design tasks, however the large

molecule tasks they considered were relatively simple, single-objective prob-

lems (e.g. maximization of the likelihood of a hidden Markov model). The vac-

uum of rigorous in silico evaluation tasks for large-molecule design motivated

us to propose our RFP task as a new benchmark.

We construct the start pool by inverting the scores and selecting the top-k
∗https://torchdrug.ai/docs/benchmark/generation.html
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non-dominating sequences (i.e. we found the k most dominated sequences in

the ZINC dataset w.r.t. logP and QED). Constructing the task in this way is

better than simply sampling randomly from ZINC because QED is bounded

above by 1 and many ZINC sequences already score fairly close to 1. Start-

ing with dominated sequences ensures that there is sufficient headroom for

improvement to observe variations in optimizer behavior. We capped the max

sequence length at 128 SELFIES tokens, including utility tokens. The SELF-

IES vocabulary was precomputed from the entire ZINC dataset (Krenn et al.,

2020).

C.1.3 DRD3 Docking + SA Task

We use the DRD3 docking score oracle from Huang et al. (2021), and the fol-

lowing quotation is reproduced from https://tdcommons.ai/benchmark/

docking_group/overview:

“ Docking is a theoretical evaluation of affinity between a ligand (a small

molecular drug) and a target (a protein involved in the disease). As a molecule

with higher affinity is more likely to have higher bioactivity, docking is widely

used for virtual screening of compounds (Lyu et al., 2019). ”

Because optimizing solely for docking may produce molecules that are dif-

ficult to synthesize, we also optimize for synthetic accessibility (SA) (Ertl &

Schuffenhauer, 2009).

To construct the start pool for this task we selected 512 molecules from

ZINC uniformly at random and labeled them with the objective oracles. We
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then used the same start pool and SELFIES encodings for all experimental

trials and all optimization methods.

C.1.4 Stability + SASA Task

In this work we present a new in silico benchmark task designed to simulate

searching for improved red fluorescent protein (RFP) variants in vitro, a prob-

lem of significant interest to biomedical researchers (Dance, 2021). We opti-

mize red-spectrum proteins with known structures for stability (-dG or nega-

tive change in Gibbs free energy) and solvent-accessible surface area (SASA)

(Shrake & Rupley, 1973; Cock et al., 2009) in simulation, using the FoldX

suite (Schymkowitz et al., 2005) and BioPython to evaluate our objective func-

tion. Stability as evaluated by FoldX—particularly in the negative case—has

been shown to correlate with protein function (Høie et al., 2021). Solvent-

accessible surface area will correlate with factors that influence the brightness

and photostability of the fluorescent protein: aggregation propensity due to

exposed hydrophobic surface (Mishra et al., 2018) and shielding by the beta-

barrel, which encapsulates the fluorophore (Chudakov et al., 2010). Since

both of these benchmark tasks are functions of the protein’s three-dimensional

structure, it is expected that training a model on these tasks will require the

model to learn a latent representation for structure, which in turn determines

function.

We constructed the start pool in two phases. First we searched FPBase for

all red-spectrum (defined in this context as having an emission wavelength at
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least 580 nm) proteins with at most 244 residues with known 3D structures,

selecting the highest resolution structure if more than one was available. If

more than one chain was present in the structure, we selected the longest

chain as the representative residue sequence. Starting from these base pro-

teins, we used NSGA-2 to collect additional labelled sequences to use in the

start pool for subsequent experiments.

Although this task is a significant step forward for in silico evaluation of

discrete sequence design, it is currently limited by the capabilities of FoldX,

which can only compute structures from substitution mutations (i.e. the se-

quence length cannot change). Deep learning structure oracles such as Al-

phaFold (Jumper et al., 2021) or RoseTTAFold (Baek et al., 2021) could also

be used, but we found FoldX to be simpler and more amenable for rapid pro-

totyping.

C.1.5 Wet lab experimental procedure

We synthesized fluorescent proteins with PUREfrex 2.1 (Cosmo Bio LTD) in

50 uL reactions from linear DNA purchased from IDT as eBlock dsDNA gene

fragments. We ran reactions at 30◦C overnight in black, half-area microplates

(Corning #3993) with optically clear plate adhesive and measured excitation

and emission through a series of sweeps (fixing the excitation wavelength and

scanning emission every 1–2 nm, or vice versa). We determined peak excita-

tion and peak emission as the wavelength that gave maximum fluorescence

units. Using NanoDSF on an Uncle instrument (Unchained Labs), we mea-
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sured protein thermostability as Tm, defined as the midpoint transition tem-

perature of the thermal melt curve.

Implementation Details

Our models are implemented in PyTorch (Paszke et al., 2019b), BoTorch (Ba-

landat et al., 2020a), and GPyTorch (Gardner et al., 2018a). Our genetic opti-

mizer baselines are implemented in PyMOO (Blank & Deb, 2020). Our code is

publicly available at https://github.com/samuelstanton/lambo. Hyperpa-

rameters are summarized in Appendix C.2.4.

C.2.1 Architecture Details

We used the same base architecture for all experiments, relying on 1D convolu-

tions (masking positions corresponding to padding tokens). We used standard

pre-activation residual blocks with two conv layers, layernorm, and swish ac-

tivations. We used a kernel size of 5, 64 intermediate channels and 16 latent

channels.

The shared encoder and decoder each were composed of 3 of these residual

blocks (for a total of 6 convolutional layers each). The shared encoder embeds

input sequences with standard vocabulary and sinusoidal position embeddings.

The discriminative encoder was composed of a single residual block.

Note that transformer encoder layers could be substituted as a drop-in re-

placement for these convolutional residual blocks, we used small convolutional

layers because they are fast to train and performed adequately in our experi-
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ments.

For multi-task GPs, we chose ICM kernels for their efficiency, particularly

in sampling (Bonilla et al., 2007; Maddox et al., 2021b), their flexibility and

popularity.

C.2.2 DKL Implementation Details

Training DKL models is an art. Some best practices apply to both stochastic

variational and exact GP inference, others are specific to the former.

Applicable to exact and variational GP inference

1. Kernel hyperparameter priors matter. Allowing the DKL GP to easily

change both the inputs to the final conventional GP kernel (e.g. RBF)

and the lengthscale of that kernel doesn’t work well. We placed a tight

Gaussian prior (σ = 0.01) around the initial lengthscale value and forced

the encoder to learn features appropriate for that lengthscale. Note that

this is distinct from simply fixing the kernel hyperparameters a priori.

2. Optimizer hyperparameters matter. Adam is really convenient to avoid

too much learning rate tuning, but it can cause unexpected issues when

jointly training supervised and unsupervised heads. We almost com-

pletely disabled the running estimates of the first two moments in Adam,

using β1 = 0., and β2 = 0.01.

3. Normalization matters. This is more of an issue for SVGPs than exact

GPs, but in both cases batchnorm can cause undesirable and unexpected
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behavior. Use layernorm.

Applicable to variational GP inference

1. Initialization matters. We use the procedure described in Maddox et al.

(2021c) to reinitialize the inducing point locations and the variational

parameters every time the model was retrained. This trick significantly

improves results and saves computation, since the GP training does not

completely start over every outer loop iteration.

2. One final trick that is very useful for SVGPs is to turn off gradients to

all GP-related parameters every other epoch (so half the epochs are only

train the encoder).

As we show in the main text and Figure C.2, DKL SVGPs can consistently

be trained to similar levels of accuracy as exact DKL GPs with very little

trouble, once the proper training procedures are in place. With these practical

insights we were able to jointly train supervised GP heads and unsupervised

language model heads on a shared encoder simply by taking one gradient step

on the supervised GP loss and one gradient step on the unsupervised DAE

loss per minibatch, using the same optimizer and learning rate schedule. We

used diagonal Gaussian likelihoods for all our experiments, with the noise vari-

ance initialized at 0.25.

We found that DKL GPs (both exact and variational) were not immune to

overfitting, so we used weight decay (1e-4) and reserved 10% of all collected

data (including online queries) as validation data for early stopping.
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C.2.3 DAE Implementation Details

MLM Head We used a mask ratio of 0.125 for all experiments when training

MLM heads. The MLM loss is computed by randomly masking input tokens,

and computing the empirical cross-entropy between the original sequence and

the predictive distribution of the MLM head at the masked positions. During

sequence optimization the MLM predictive distribution is modified to prevent

sampling the original token (to encourage diversity) and to prevent the sam-

pling of special tokens.

LANMT Head Our LANMT head is identical to our MLM head, except for

the addition of a length prediction head and length transform module (Shu

et al., 2020), a different corruption procedure and training objective. We used

a max length change of 8 in our experiments for Figure C.3, so the corruption

function randomly sampled a length change ∆t between -8 and 8. ∆t tokens

were subsequently deleted, replaced, or inserted into the sequence. The cor-

rupted sequence was forwarded through the model, which was also given the

original sequence length as a label during training. A training step takes a gra-

dient step on the cross-entropy between the predicted length and the actual

length, and on the cross-entropy between the predictive distribution over the

whole decoded sequence and the original sequence.

C.2.4 Hyperparameters
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Table C.1: LaMBO hyperparameters

Sequence Optimization
Name Value
|D0| 512
Query batch size (b) 16
|Xbase| b
# Optimization rounds (imax) 64
# Inner loop restarts 16
# Inner loop gradient steps (jmax) 32
Inner loop step size (η) 0.1
Entropy penalty (λ) 1e-2
# MC acquisition samples 2
Random seeds {0, . . . , 9}

DAE Architecture
Name Value
Shared enc. depth (# residual blocks) 3
Disc. enc. depth (# residual blocks) 1
Decoder depth (# residual blocks) 3
Conv. kernel width (# tokens) 5
# conv. channels 64
Latent dimension 16
GP likelihood variance init 0.25
GP lengthscale prior N (0.7, 0.01)
# inducing points (SVGP head) 64

DAE Training
Name Value
DAE corruption ratio (training) 0.125
DAE learning rate (MTGP head) 5e-3
DAE learning rate (SVGP head) 1e-3
DAE weight decay 1e-4
Adam EMA params (β1, β2) (0., 1e-2)
Early stopping holdout ratio 0.1
Early stopping relative tolerance 1e-3
Early stopping patience (# epochs) 32
Max # training epochs 256
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Additional Results

C.3.1 What About Substring Kernels?
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Figure C.1: Evaluating the effect of kernel choice on exact GP regression with a discrete
SSK (left) and a deep Matérn kernel with a CNN encoder (right) when predicting the SASA
property of RFP large molecules. The SSK GP is under-confident and less accurate than the
DKL GP, suggesting SSK GPs would not improve optimization performance.
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Figure C.2: Negative log-likelihood (NLL) and root mean squared error (RMSE) for various
discriminative models in the offline regression setting. DKL MTGPs and SVGPs have good
performance across the board, while bootstrapped CNN ensembles (DE) are very overconfi-
dent. Exact GP inference with a substring kernel (SK) is very underconfident and has poor
accuracy when predicting logP and QED.

Since the start pools used in the evaluation in Figure 3.3 are fairly small

(i.e. 512 examples), it is natural to wonder how a substring kernel (SSK) GP

(e.g., Moss et al., 2020)) would compete with our DKL-based GPs. Due to

constraints on time and computation, and SSK scalability issues, we do not di-
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rectly compare SSK GPs and DKL GPs in the online setting. However, in Fig-

ure C.1, we compare SSK GPs and DKL GPs in the offline regression setting,

training both models only through the supervised loss to predict the SASA

property of RFP large molecules, using 410 examples for training and 102 ex-

amples for validation and test. The SSK GP performs fairly well, but is very

under-confident when compared to the DKL GP. At an empirical level, our

results do not support the claim that SSK GPs are superior models for bio-

logical sequences. SSKs have further drawbacks which make it hard to justify

additional investment into SSK GPs for drug design.

Lack of Positional Information: at a conceptual level, SSKs cannot iden-

tify regions of the sequence that have little effect on the objective values, since

matching substrings increase the prior covariance between sequences regard-

less of where the substrings are found. Simply put, an SSK just counts the

occurrences of every possible n-gram across every possible combination of n

positions in a sequence. The gap decay hyperparameter downweights occur-

rences corresponding to position combinations with elements that are not

closely colocated. Hence SSKs have very limited positional awareness in the

sense that sequences with similar n-gram counts have high prior covariance,

regardless of where the n-grams actually occurred. Positional awareness is im-

portant when dealing with biological sequences from some subpopulation (e.g.

a family of fluorescent proteins) since they have many identical subsequences,

only varying at positions that strongly affect function.

Difficult to Scale: at a practical level, SSKs are difficult to integrate with
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deep generative models since they do not operate on continuous embeddings

(Nigam et al., 2019), and standard methods for scaling GPs — inducing point

methods (e.g., Hensman et al., 2013a), random feature expansions (e.g., Lázaro-

Gredilla et al., 2010), and CG-based methods (e.g., Gardner et al., 2018a) —

are difficult to apply. In particular inducing points methods are impractical

because the inducing point domain would be the discrete input space, intro-

ducing a challenging discrete optimization subproblem just to train the sur-

rogate. Furthermore SSKs struggle to scale not just to large datasets, but

also to long sequences. The dynamic programming algorithm used by Moss

et al. (2020) to compute their SSK is parallelizable, but becomes prohibitively

memory intensive for sequences longer than 100 tokens, even when chunking

the sequence into smaller pieces. In fact, we used an Nvidia RTX 8000 GPU

with 48 GB of memory just to produce Figure C.3.1. We also implemented a

memory-efficient trie-based SSK, which could handle longer sequences but was

prohibitively slow and difficult to parallelize.

C.3.2 Comparison to LSBO for single-objective BBO

Here we evaluate LaMBO in the single-objective setting, using the penalized

logP task described in Tripp et al. (2020). In contrast to SSK-based methods,

LaMBO can successfully be scaled to large datasets with standard variational

GP inference, allowing us to compare to the popular latent space BayesOpt

approach (LSBO) (Gómez-Bombarelli et al., 2018) on a larger-scale problem.

The start pool for this task is composed of the 2000 highest scoring sequences
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Figure C.3: LaMBO reaches a higher objective value than the best reported LSBO result.
When constrained to 500 evaluations LSBO is more sample efficient (ignoring pretraining
data). The midpoint, lower, and upper bounds of the LaMBO curve depict the 60%, 40%,
and 80% quantiles, estimated from 5 trials.

from ZINC, and 8000 random sequences, replicating the setup in Tripp et al.

(2020). To accommodate the larger dataset, the discriminative head uses k in-

dependent stochastic variational GPs (SVGPs) with 64 shared inducing points

rather than an exact MTGP.

In Figure C.3 we demonstrate that LaMBO is competitive with a variant

of LSBO specifically designed for this task, requiring about twice as many

online observations before reaching the reported median best score attained

by LSBO (Tripp et al., 2020). As noted in Section 3.3, LSBO uses the entire

ZINC dataset for pretraining, so we do not directly compare sample efficiency.

In addition to the differences between LaMBO and LSBO already noted, we

use SELFIES encodings rather than SMILES. We use a seq2seq LANMT-style

decoder head for this task, since logP heavily favors large molecules. High-

scoring molecules such as those found by LSBO are larger than any found in

ZINC, so it is important that the optimizer allow insertions.

Overall, LaMBO outperforms the best reported LSBO score (27.84) by a

wide margin, reaching scores as high as 50 for some seeds, while using a more
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general architecture and requiring less data (counting both pretraining data

and online queries). The factor that ultimately bounds the penalized logP ob-

jective in practice is the max sequence length constraint imposed by the posi-

tional encoding scheme we use. Therefore we note that, despite its widespread

use, unconstrained logP (penalized or otherwise) is a poor optimization bench-

mark, since it can be manipulated by altering the positional encoding to per-

mit longer sequences (Nigam et al., 2019; Tripp et al., 2021; Fu et al., 2020).

In short, while LaMBO is designed to facilitate multi-objective optimization

— a central feature of drug design — it can also outperform the widely used

single-objective LSBO, even in a single-objective setting.
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C.3.3 Ablating LaMBO: Proposal Entropy and Discriminative Perfor-

mance

Uniform proposals DAE proposals LaMBO ( = 0) LaMBO ( = 0.01)
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Figure C.4: Additional metrics for the ablation experiment described in Section 3.5.3 and
Figure 3.4, where we cumulatively add the elements described in Section 3.4.4: (1) DAE-
generated proposals, (2) DAE proposal optimization following ∇Z [ℓquery] with λ = 0. (see
Eq. (3.3)), and (3) DAE proposal optimization with λ = 0.01. The top row shows the aver-
age entropy of the generative DAE proposal distributions over time. As expected, the entropy
penalty decreases the proposal entropy. The middle and bottom rows show the discrimi-
native Spearman’s ρ and NLL (averaged across objectives) on heldout data over time. Train-
ing the LaMBO architecture with both the unsupervised DAE objective and the supervised
GP objective improves discriminative performance compared to the same model trained only
through the supervised objective. Otherwise the methods behave similarly, verifying that bet-
ter solutions are the result of better proposals, rather than a better discriminative model. The
midpoint, lower, and upper bounds of each curve depict the 50%, 20%, and 80% quantiles,
estimated from 10 trials.
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Appendix D: Conformal BayesOpt Supplementary Material

Appendix D is structured as follows:

• In Appendix D.1, we describe limitations and broader impacts.

• In Appendix D.2, we give theoretical statements on conformal Bayesian

posteriors and our implementation of the acquisition functions.

• In Appendix D.3, we give more methodological details.

• In Appendix D.5, we display more experimental results of coverage of

each trial.

• In Appendix D.6, we list the hyper-parameters used for each implemen-

tation.
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Limitations and Broader Impacts

D.1.1 Limitations

Marginal vs. conditional coverage guarantees: full and split conformal

prediction sets have marginal coverage guarantees that are easy to confuse

with conditional coverage guarantees (Angelopoulos & Bates, 2021). Marginal

coverage guarantees must be interpreted with the same frequentist mindset

as other frequentist measures of uncertainty, such as confidence intervals and

p-values, with similar risks of misinterpretation by inexperienced users. We

have attempted to make clear in the main text that marginal coverage guaran-

tees are only realized in the aggregate, as the average of coverages observed

in many independent, parallel experiments. Coverage observed within any

specific trial can (and does) vary substantially from the aggregate tendency.

There is very recent work which seeks to provide a stronger validity guarantee

that can be expected to hold for some (1 − δ) fraction of trials, which we hope

to apply to conformal BayesOpt in future work (Bates et al., 2021).

Approximation error we have introduced some necessary approximations

in this work, notably the discretization of continuous labels and the contin-

uous relaxation of conformal prediction sets. While we have given empirical

evidence that the error introduced by these approximations does not appear to

be too severe, practitioners should be aware that some deviation from the ex-

pected coverage level may occur, as we discuss in Chapter 4.7. This limitation

is analogous to the limitations of numerical linear algebra implemented with
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floating point arithmetic.

D.1.2 Broader Impacts:

Potential negative social impacts: black-box optimization algorithms are

application-agnostic. The same algorithms that are being used to design new

therapeutics could in theory be used to discover new toxins for bioterror or

biowarfare. Similarly, the same algorithms used to design new materials for

scientific discovery could be used to design new weapons or rocket fuels. Our

work is not particularly vulnerable to misuse relative to the large body of ex-

isting work on black-box optimization algorithms.

Machine learning research: phenomena like model misspecification and

covariate shift are often blamed on complexity in the external world, but they

are also induced by our own behavior, such as choosing a convenient likelihood

for a model (even when a more sophisticated option is available) or actively

selecting new training data. We hope this work spurs more interest in under-

standing how to reliably interact with the models we have today, rather than

only working on “better” models for tomorrow.

Experimental design: applications like materials science and drug dis-

covery require the coordination of large, interdisciplinary teams of scientists

and engineers. If machine learning systems are to play a central role in that

coordination, they must be reliable, in the sense that the systems have stable

behavior and consistently valid predictions. That kind of reliability requires

more than faith in an ad hoc collection of model assumptions with limited ex-
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perimental validation. This work is a step towards machine learning systems

with interpretable certificates of reliability that can serve as the foundation

on which to build teams which push the boundaries of experimental science.

However, these types of design technologies do have the potential for misuse

as described above.

Proofs and Derivations

D.2.1 Characterizing the conformal Bayes posterior

All conditional distributions are also conditioned on D, which we omit from

the notation for the sake of clarity. Recall that the conformal Bayes posterior

is written as

p(f(x)|x) =
∫
y∈Y

p(f(x)|x, y)p(y|x)dy,

=

∫
y∈Cα(x)

p(f(x)|x, y)p(y|x)dy +
∫
y∈Y−Cα(x)

p(f(x)|x, y)p(y|x)dy.
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Now we define a new conformal Bayes posterior distribution as a mixture dis-

tribution over y,

pα(y = y′|x) = (1− α)q1(y|x) + αq2(y|x) (D.1)

Z1 =

∫
y∈Cα(x)

1dy, q1(y|x) =


1/Z1 if y′ ∈ Cα(x),

0 else,

Z2 =

∫
y∈Y−Cα(x)

p(y|x)dy, q2(y|x) =


0 if y′ ∈ Cα(x),

p(y|x)/Z2 else,

where the normalizing constants Z1, Z2 ensure that
∫
pα(y|x)dy = 1 (assuming

Cα(x) is bounded and non-empty, so Z1 is non-zero and finite). Therefore the

corresponding conformal Bayes posterior distribution over f is

pα(f(x)|x) =
∫
y∈Y

p(f(x)|x, y)pα(y|x)dy

=
1− α

Z1

∫
y∈Cα(x)

p(f(x)|x, y)dy + α

Z2

∫
y∈Y−Cα(x)

p(f(x)|x, y)p(y|x)dy

Finally we can rewrite both integrals over all Y by introducing a binary mask,
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Definition D.2.1.

pα(f(x)|x) :=
1− α

Z1

∫
mα(x, y)p(f(x)|x, y)dy

+
α

Z2

∫
(1−mα(x, y))p(f(x)|x, y)p(y|x)dy,

mα(x, y) :=


1 if y ∈ Cα(x),

0 else.

Proposition D.2.1. Let n > 1 and pα(f |D) be defined according to Definition

D.2.1. Then pα(f |D) converges pointwise in x to p(f(x)|x, D) as α→ 1,

lim
α→1

pα(f(x)|x) = p(f |x).

Proof:

Let ε > 0, n > 1, and define αk = 1− 1/(k + 1) for k ∈ N such that k < n.

|pαk
(f(x)|x)− p(f(x)|x)| = |∆1 +∆2|,

≤ |∆1|+ |∆2|,

where

∆1 =
1− αk

Z1

∫
y∈Cαk

(x)

p(f(x)|x, y)dy −
∫
y∈Cαk

(x)

p(f(x)|x, y)p(y|x)dy,

∆2 =
αk

Z2

∫
y∈Y−Cαk

(x)

p(f(x)|x, y)p(y|x)dy −
∫
y∈Y−Cαk

(x)

p(f(x)|x, y)p(y|x)dy.
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Recalling the definition of Cα(x) (Def. 4.4.1), we observe that Cαk
(x) ⊃

Cαk+1
(x),∀k ∈ N.∗ Furthermore we see that since the importance weights w

must sum to 1 that limk→∞Cαk
(x) = ∅.

Bounding |∆1|:

|∆1| ≤ |O(1− αk)−O(1− αk)|,

⇒ |∆1| ≤ c1(1− αk).

Bounding |∆2|:

|∆2| ≤ |(αk − 1)O(1)|,

⇒ |∆2| ≤ c2(1− αk).

Choose k ∈ N large enough that (c1 + c2)(1− αk) < ε. ■
∗A ⊃ B indicates that A is a strict superset of B.
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D.2.2 Monte Carlo integration of conformal acquisition functions

We want to integrate acquisition functions of the form

a(x) =

∫
u(x, f)pα(f |x)df

=
1− α

Z1

∫ ∫
u(x, f)mα(x, y)p(f(x)|x, y)dydf

+
α

Z2

∫ ∫
u(x, f)(1−mα(x, y))p(f(x)|x, y)p(y|x)dydf,

Suppose we have sampled Ycand = {yj}m−1
j=0 , with yj ∼ p(y|x), and vj ∼

p(f |x, yj). Starting with the first term in the sum, we have

1− α

Z1

∫ ∫
u(x, f)mα(x, y)p(f(x)|x, y)dydf ≈

1− α

Z1|Ycand|
∑
j

mα(x, yj)

p(yj|x)
u(x, vj).

We estimate the normalization constant Z1 as follows:

Z1 =

∫
y∈Cα(x)

1dy =

∫
mα(x, y)dy

≈ 1

|Ycand|
∑
j

mα(x, yj)

p(yj|x)

By similar logic the second term in the sum is estimated as follows:

α

Z2

∫ ∫
u(x, f)(1−mα(x, y))p(f(x)|x, y)p(y|x)dydf

≈ α

Z2|Ycand|
∑
j

(1−mα(x, yj))u(x, vj),
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where

Z2 =

∫
y∈Y−Cα(x)

p(y|x)dy =

∫
(1−mα(x, y))p(y|x)dy

≈ 1

|Ycand|
∑
j

(1−mα(x, yj))

Upon further inspection we see that |Ycand| drops out of the equations, and in

effect we are simply computing weighted sums, where the weights have been

normalized to sum to 1, i.e.

a(x) ≈ â(x) = (1− α)β⊤
0 u+ αβ⊤

1 u, (D.2)

u = [u(x, v0), . . . , u(x, vm)]
⊤,

(β0)j =
mα(x, yj)

p(yj|x)

(∑
k

mα(x, yk)

p(yk|x)

)−1

,

(β1)j = (1−mα(x, yj))

(∑
k

(1−mα(x, yk))

)−1

.

D.2.3 Conformalized Single Objective Acquisitions

Conformal NEI: rather than taking u(x, D, f) = [f(x)−maxyi∈D yi]+ (which

corresponds to EI), take u(x, D, f) = [f(x) − maxx′
i∈D f(xi)]+. Note that u is

now a function of the joint collection of function evaluations (f(x′), f(x1), . . . , f(xn−1)).

Conformal UCB: the reparameterized form of UCB was originally derived
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in Wilson et al. (2017) as follows:

UCB(x) =

∫
u(x, f)N

(
f

∣∣∣∣µ, βπ2 Σ

)
df,

where β > 0 is a hyperparameter, µ,Σ are the mean and covariance of p(f |D),

and u(x, f) = µ + βπ
2
|µ − f |. Because UCB is optimistic, the conformalization

procedure is a little different than the previous acquisition functions. When

marginalizing out the outcomes y to obtain the conformal Bayes posterior, we

integrate over the restricted outcome space Yµ = {y ∈ Y|y ≥ µ}. Hence we

derive conformal UCB as

CUCBα(x) =

∫ ∫
y∈Yµ

u(x, f)N
(
f

∣∣∣∣µ(y), βπ2 Σ(y)

)
pα(y|x, D)dydf,

where µ(y),Σ(y) are the predictive mean and covariance of p(f |x, y,D).

D.2.4 Conformalized Multi-Objective Acquisition Functions

Following Daulton et al. (2020b), we have that EHVI can be written as

EHVI(x) =

∫
HVI(f(x))p(f |D,y)df =

K∑
k=1

∫
HVIk(f(x))p(f |D,y)df,

where HVIk(f(x)) is the kth box hypervolume improvement. This is our util-

ity function and is defined as

HVIk(f(x)) =
M∏

m=1

[min(u
(m)
k , f(x))− l

(m)
k ]+,
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where u
(m)
k (l(m)

k ) is the mth upper (lower) vertex corresponding to the kth

non-dominated hyper-rectangle in function space.

Instead of f(x), we use y(x) to compute NEHVI instead, following Daulton

et al. (2021a).

Our derivations hold for so-called composite acquisitions as well, so that

we could also easily extend to qParEGO and qNParEGO variants for multi-

objective optimization (Daulton et al., 2020b; 2022).

D.2.5 Conformalizing Batch Acquisitions

In general batch acquisitions have the form

a(x0, . . . ,xq−1) =

∫
max
i<q

u(xi, f)p(f |D)df. (D.3)

Note that f(x0), . . . , f(xq−1) are sampled jointly when estimating Eq. (D.3)

with Monte Carlo. Increasing the query batch size to q increases the dimen-

sionality of the outcome to q × p, where p is the number of objectives. Our

importance-sampling MC integration procedure introduced in Section 4.6.2

scales gracefully with higher outcome dimensionality, we simply sample the

elements of Ycand from p(y(x0), . . . , y(xq−1)|x0:q−1, D).

The bigger challenge arises in computing the conformal masks for batched

query outcomes. In our current implementation we compute the conformal

scores (the Bayes posterior log-likelihood) pointwise for each query batch el-

ement, with corresponding pointwise conformal prediction masks. We apply

the pointwise masks before computing maxi<q u across query batch elements.
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The alternative would be to compute a joint conformal score across all query

batch elements (similarly computing joint scores for each of the previous query

batches in the training data). Note that this second approach essentially re-

duces to replacing each datum (xi, yi) in Eq. (4.1) with

(Xi,yi) = ([x0, . . . ,xq−1]
⊤, [y0, . . . , yq]

⊤).

We leave the implementation of this second approach for future work.

Implementation Details

D.3.1 Bringing everything together

In Algorithm 7 we summarize the entire conformal BayesOpt inner loop used

to select new queries.

D.3.2 Stable Predictions on the Training Set

We found that computing the negative log likelihood (and its gradients) on

our set of training data to be numerically unstable and so used stochastic diag-

onal estimation to estimate the posterior variances. Plugging in KXX into that

posterior mean and variance, we get that the posterior mean is K(K + σ2)−1y

and the posterior covariance is Σ = σ2I +K −K(K + σ2I)−1K. Unfortunately,

the second term ends up being unstable as it requires solving (and then sub-

tracting) a (batched) system of size n × n. To see the reason for instability,

note that as σ2I → 0 then the entire covariance matrix tends to zero.
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Algorithm 7: Pseudocode for the conformal BayesOpt inner loop
Input: train data D = {(xi, yi)}n−1

i=0 , initial solution xn, score function s,
miscoverage tolerance α, sigmoid temperature τσ, SGLD learning rate ηx,
# SGLD steps tmax, SGLD temperature τsgld, classifier learning rate ηθ,
EMA parameter γ.

Initialize classifier qθ, set weight average θ̄ = 0.
Initialize classifier dataset D′ = {(xi, 0)}n−1

i=0

for t = 0, . . . , tmax − 1 do
Estimate r̂t(xi),∀i ∈ {0, . . . , n} with qθ̄. (Eq. 4.8)
(wt)i = r̂t(xi)/

∑
k r̂t(xk),∀i ∈ {0, . . . , n}. Draw Yt = {yj}m−1

j=0 s.t.
yj ∼ p̂(y|x′

t, D).
m = outcome_mask(D,xn,wt, Yt, s, α, τσ). (Algorithm 4)
Estimate acquisition value a(xn). (Eq. D.2) Update
xn ← sgld_step(xn, a(xn), ηx, τsgld). Update D′ ← D′ ∪ {(xn, 1)}.
Update θ ← θ − ηθ∇θℓ(θ,D

′) Update θ̄ ← (1− γ)θ̄ + γθ.
return xn

We originally tried backpropagating through an eigendecomposition; how-

ever, this produced ill-defined gradients, see the explanation in Ionescu et al.

(2015), before instead computing a stochastic diagonal estimate. For the stochas-

tic diagonal estimate, we used the identities

Σ = σ2I + σ2K(K + σ2I)−1 (D.4)

diag(Σ) ≈ σ2

(
1 +

∑J
i=1 zi ⊙K(K + σ2I)−1z∑J

i=1 zi ⊙ zi

)
, (D.5)

where zi has i.i.d Bernoulli entries and ⊙ is the Hadamard product. This esti-

mator comes from Bekas et al. (2007) and is in spirit quite similar to Hutchin-

son’s trace estimator for the log determinant. We used J = 10 probe vectors.
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Philosophical Discussion

This section contains an extended discussion on the ideas presented in Section

4.3.

Highlighting model assumptions: f ∗ is an element of some true hypoth-

esis space F∗, which we may or may not be able to fully realize in practice

(due to computational constraints, finite numerical precision, etc.). Instead

we assume f ∗ either lies in, or is “close” to some f in a realizable model class

F . We also usually do not observe f ∗ directly, but instead receive a dataset of

examples D := (Xseen, Yseen) = {(xi, yi)}n−1
i=0 , where xi ∈ X are drawn from

a true marginal distribution p(x), and noisy labels yi ∈ Y are drawn from

a true conditional distribution p∗(y|x) defined by the composition of f ∗ and

some noise process. We rarely know the true noise process, instead we often

assume the noise process has some convenient form, such as yi = f(xi) + εi,

where εi ∼ N (0, σ2Ip). Our model of the noise process determines the model

likelihood, p(D|f) = p(y0, . . . ,yn−1|x0, . . . ,xn−1, f).

Credibility and coverage are often confused. Neither p(f |D), nor

p(y|x, D), nor credible sets derived from either posteriors should be inter-

preted as approximating some long-term, empirical, observed frequency. For

p(f |D) and its corresponding credible sets Ycred, it would scarcely be sensible

to talk of the observed frequency of events that are never actually observed.

However the distinction is often missed when considering p(y|x, D) and its cor-

responding credible sets Ycred. Indeed, there is an abundance of literature dis-
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cussing the “calibration” of p(y|x, D) in the context of Bayesian deep learning

(Guo et al., 2017; Ovadia et al., 2019), where calibration means the empirical

frequency with which labels in a fixed set of test examples fall within their cor-

responding ϕ-credible sets (conditioned on a fixed set of train examples) for

different choices of ϕ, epitomized by the wide usage of the ECE metric intro-

duced by Naeini et al. (2015). Notions of calibration like ECE resemble the

frequentist concept of coverage, which we discuss in more detail in the next

section, but are not exactly equivalent. Furthermore, even if ECE was mea-

suring frequentist coverage, there is the more troubling fact that in general

Bayesian credibility does not directly correspond to frequentist coverage.∗ A

Bayesian ϕ-credible set may contain the true labels roughly (ϕ × 100)% of the

time, or it may not (Wasserman, 2008).

Informally this conceptual difference is due to the fact that credible sets

are the realization of the Bayesian ideal of perfect internal coherence (assum-

ing exact inference) when our model assumptions perfectly represent our true

beliefs, with well-known rationales such as the Dutch book argument. By con-

trast, frequentist coverage measures external correspondence, measuring the

degree to which our predictions agree with real measurements, regardless of

the modeling assumptions we made to arrive at our predictions. The ubiquity

of well-worn maxims like “all models are wrong, but some are useful” should

hint to us that internal coherence and external correspondence are often in
∗Under very specific assumptions such as those found in Monard et al. (2021) some

Bayesian credible sets can be shown to be valid, optimal frequentist predictions sets, but
such cases are the exception, not the rule.
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conflict. This tension was recognized by Dawid (1982) who argued that any

post-hoc calibration procedure is incoherent in the internal, Bayesian sense,

though such procedures may indeed have practical value.

So why do Bayesian inference? The real utility of Bayesian inference

lies not in the coverage (or lack thereof) of Bayesian credible intervals, but

in the way Bayesian posteriors provide a straightforward means to compute

useful decision rules. Briefly put, suppose we have a utility function u(δ(D), f)

which measures the utility of selecting a query point x via decision rule δ based

on information D if f ∗ = f . It is easier to find a Bayes-optimal decision rule δ∗

that maximizes the posterior expected utility Ep(f |D)[u(δ(D), f)], than it is to

compute a frequentist u-admissible decision rule satisfying Ep(D)[u(δ(D), f)] ≥

Ep(D)[u(δ
′(D), f)], ∀f ∈ F and all possible alternative decision rules δ′.

Frequentist decision rule criteria like u-admissibility are also subject to mod-

eling assumptions (particularly the choice of F), and are arguably overly-conservative

in many situations, since they ignore the fact that after seeing D there are cer-

tain choices of f that can be all but eliminated from consideration, even after

accounting for uncertainty in the model assumptions. For a thorough intro-

duction to a decision-theoretic motivation of Bayesian inference, see Berger

(2013).
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Additional Experimental Results

D.5.1 Benchmark Problems

Single Queries We display optimization performance for q = 1 and q = 3

in Figure D.1 across conformal expected improvement (EI), noisy expected

improvement (NEI) and upper confidence bound (UCB) alongside their non-

conformal counterparts. Overall, we see that the conformalized aquisitions

tend to slightly outperform their non-conformalized counterparts, especially

for q = 1 and on the higher dimensional problems. However, the picture is

somewhat noisy overall as these problems are relatively straightforward.

Next, in Figure D.2, we evaluate the coverage of the conformalized set and

the Bayesian posterior as we increaase the dimensionality of the problem. These

are the same models as the q = 3 row in Figure D.1. Here, we plot the median

and its 95% confidence interval as shading, finding that the conformal sets are

better calibrated in a frequentist sense than the equivalent coverage level of

the Bayesian posterior. The gaps in coverage levels improves as we increase

the dimensionality from 5 to 20 as the GP models become increasingly more

misspecified and their fits degrade.

Batch Queries Next in Figure D.1c and D.1d, querying q = 3 points at a

time. Coverage plots are shown in Appendix D.5. As discussed in Appendix

D.2.5, we compute the conformal scores and masks pointwise across query

batch elements, which introduces some additional error that may hinder per-

formance. The conformal acquisition variants still generally perform well rela-
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Figure D.1: BayesOpt best objective value found with conformal and standard acquisition
functions on single-objective tasks Levy-d and Ackley-d (reporting median and its 95% conf.
interval, estimated from 25 trials). qEI, qNEI, conformal qEI, and conformal qNEI all perform
similarly, conformal qUCB is best everywhere except Ackley-20, where it comes second after
qUCB.
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Figure D.2: BayesOpt empirical coverage of conformal and credible prediction sets evaluated
on holdout data from single-objective task Levy-d (reporting median and its 95% conf. inter-
val, estimated from 25 trials). The conformal coverage curves track the target 1 − α (black
dashed line) well, significantly better than the credible curves, which tend to be overconfi-
dent. We expect these intervals to have a percentage coverage across repeated trials (shown in
black), but find that the credible intervals tend to be overconfident as the dimensionality in-
creases, an indication of misspecification and underfitting. Median w/ 95% confidence interval
is shown.

tive to the standard variants, except for Ackley-20 where qUCB beats all com-

petitors.

In Figure D.3, we display the single objective coverages for both q = 1 and

q = 3 on the Levy and Ackley test functions. Again, we see that the conformal

posterior distributions have better empirical coverage than the correspond-

ing Bayesian posteriors throughout the optimization process. Specifically, we

find that on the higher dimensional problems, the amount of variation is re-
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duced as the models become increasingly poorly specified. We also see that

the Bayesian credible sets often tend to be slightly over-confident, except on

Ackley-20, and indication of over-fitting.
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Figure D.3: Coverage of posterior intervals (either conformal for conformalized acquisitions
or posterior for standard) across Levy problems of varying dimensionalities for 25 trials (me-
dian and its 95% confidence interval are shown). We expect these intervals to have a 1 − α
percentage coverage across repeated trials (shown in black), but find that the credible inter-
vals tend to be overconfident as the dimensionality increases, an indication of misspecification
and underfitting.

In Figure D.4, we display the coverages of the conformal acquisitions on the

BraninCurrin test problem, finding surprisingly that the conformal prediction

sets tend to be slightly under-confident on this problem, perhaps due to its
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Figure D.4: Coverage for both objectives on BraninCurrin. Here, we see that the conformal
regions tend to surprisingly be quite under-confident compared to the standard credible sets

simplicity with two objectives.

D.5.2 Tabular Bandits with Real-World Drug and Antibody Data

In Figure D.5, we consider a ranking task and querying models online using

either standard upper confidence bound (UCB) or conformal UCB (C-UCB).

The first three tasks are a penalized logP task, a single objective QED task,

and the DRD3 binding affinity task, are all derived from encodings on small

molecule descriptors, please see Stanton et al. (2022) for further details about

the objectives. Penalized logP and QED were originally proposed in Gómez-

Bombarelli et al. (2018), while we used the SELFIES encodings from Krenn

et al. (2020) to produce a continuous space over the ZINC dataset.

Following Stanton et al. (2022) in (c), we use the DRD3 docking score ora-

cle from Huang et al. (2021), see https://tdcommons.ai/benchmark/docking_

group/overview for a further description.

The data for task (d) was derived from the OAS dataset (Hornung et al.,

2014), with additional descriptors annotated with the NARD protein annota-

tion tool.
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Figure D.5: Result ranking tabular molecular datasets for drug-related properties such as
solubility (a), empirical drug-likeness (b), dopamine receptor binding affinity (c) (all from
Stanton et al. (2022)) and antibody stability (d) (derived from OAS (Hornung et al., 2014).
Across datasets, our query coverage is noticeably better than UCB (bottom two rows), while
we also achieve some gains in sample efficiency (top row).

Our query coverage is noticeably better than UCB, and we also see small

gains to sample efficiency. Again, we consider both query and heldout set cov-

erage, comparing to the given choice of α across 4 random seeds.
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Experimental Details

Modelling Hyperparameters:

For all GP models in this paper, we used the default single task GP

(SingleTaskGP) model from BoTorch, which uses a scaled Matern-5/2 kernel

with automatic relevance determination and a Gamma(3, 6) prior over the

lengthscales and a Gamma(2, 0.15) prior over the outputscales. We used con-

stant means. For the likelihood, we used a softplus transformation to optimize

the raw noise, constraining the noise to be between 5× 10−4 and 0.5.

To fit the models, we used BoTorch’s default fitting utility,

fit_gpytorch_model, which uses L-BFGS-B to fit the hyperparameters.

Conformal Prediction Hyperparameters:

We used a minimum α level of 0.05 after noting that with fewer than α−1

points, it was impossible to exclude grid points from the prediction set. We

used τ = 0.01, a target grid size of 64, a maximu

Optimization Hyperparameters:

To optimize the acquisitions, we used 256 MC samples for the single objec-

tive tasks and 64 tasks for the multi-objective problems, 100 steps of SGLD

with 25 burn-in, a SGLD temperature of 10−3, and a SGLD learning rate of

10−3.

For non-conformal acquisitions, we used the same amount of samples and

then optimized with L-BFGS-B with 5 random restarts, 128 raw samples, and

a maximum of 200 steps.
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We initialized with 10 Sobol points (or points drawn from a random orthant

of the data on Ackley in Figure D.1b). All functions had data drawn with a

noise standard error of 0.1 on a normalized scale; the normalization was con-

structed from 1000 Sobol points on the function.

Compute: Our experiments were conducted on a range of NVIDIA GPUs,

including RTX 2080 Tis, Titan RTXs, V100s, and A100s on internal clusters.

All experiments used a single GPU at a time. It would require approximately

250 GPU hours to reproduce the experiments in this paper by our estimate,

1 GPU hr/seed

× 25 seeds per variant

× 1 variant per experiment

× 10 experiments

= 250 hrs.

Other experimental runs, e.g. debugging, probably consumed an order of mag-

nitude more GPU hours.

Software packages:

• Python 3, PSF License Agreement,

• Matplotlib, Matplotlib License Agreement,

• Seaborn, BSD License,

• NumPy, BSD License,
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• PyTorch, BSD License.

• GPyTorch, MIT License (Gardner et al., 2018a).

• BoTorch, MIT License (Balandat et al., 2020a).

• TorchSort∗, Apache 2.0 License.

All functions used in this paper are ultimately synthetic with implementa-

tions coming from BoTorch (Balandat et al., 2020a). The Penicillin function

comes from Liang & Lai (2021).

∗https://github.com/teddykoker/torchsort
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